Publications by authors named "Jessica Stroik"

Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the endogenous CB(1) receptor ligand anandamide under a fixed-ratio schedule of intravenous drug injection in squirrel monkeys.

View Article and Find Full Text PDF

Emerging evidence suggests that the rewarding, abuse-related effects of nicotine are modulated by the endocannabinoid system of the brain. For example, pharmacological blockade or genetic deletion of cannabinoid CB(1) receptors can reduce or eliminate many abuse-related behavioral and neurochemical effects of nicotine. Furthermore, doses of Delta(9)-tetrahydrocannabinol and nicotine that are ineffective when given alone can induce conditioned place preference when given together.

View Article and Find Full Text PDF

Increasing use of cannabis makes the search for medications to reduce cannabis abuse extremely important. Here, we show that homomeric alpha7 nicotinic receptors are novel molecular entities that could be targeted in the development of new drugs for the treatment of cannabis dependence. In rats, systemic administration of the selective alpha7 nicotinic acetylcholine receptor antagonist methyllycaconitine (MLA), but not the selective heteromeric non-alpha7 nicotinic acetylcholine receptor antagonist dihydrobetaerythroidine, (1) antagonized the discriminative effects of delta-9-tetrahydrocannabinol (THC), the main active ingredient in cannabis, (2) reduced intravenous self-administration of the synthetic cannabinoid CB1 receptor agonist WIN55,212-2 [(R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone, mesylate salt], and (3) decreased THC-induced dopamine elevations in the shell of the nucleus accumbens.

View Article and Find Full Text PDF

The mechanism of action responsible for the motor depressant effects of cannabinoids, which operate through centrally expressed cannabinoid CB1 receptors, is still a matter of debate. In the present study, we report that CB1 and adenosine A2A receptors form heteromeric complexes in co-transfected HEK-293T cells and rat striatum, where they colocalize in fibrilar structures. In a human neuroblastoma cell line, CB1 receptor signaling was found to be completely dependent on A2A receptor activation.

View Article and Find Full Text PDF