Publications by authors named "Jessica Scremin"

We present the fabrication of platinum (Pt) nanoparticle (ca. 3 nm average diameter) decorated vertically aligned graphene (VG) screen-printed electrodes (Pt/VG-SPE) and explore their physicochemical characteristics and electrocatalytic activity towards the hydrogen evolution reaction (HER) in acidic media (0.5 M HSO).

View Article and Find Full Text PDF

In this work we propose the use of statistical mixture design in the construction of a biosensor device based on graphite oxide, platinum nanoparticles and biomaterials obtained from Botryosphaeria rhodina MAMB-05. The biosensor was characterized by electrochemical impedance spectroscopy. Under optimized experimental parameters by factorial design, the biosensor was applied to the voltammetric determination of chlorogenic acid (CGA) measured as 5-O-caffeoylquinic acid (5-CQA).

View Article and Find Full Text PDF

The polysaccharide carboxymethyl-botryosphaeran (CMB) was used to improve the dispersion of multi-walled carbon nanotubes (MWCNTs) in water. This feature was applied in modifying a glassy carbon electrode (GCE) to construct a sensitive voltammetric sensor for the determination of desloratadine (DESL), a tricyclic antihistamine. The morphology and spectroscopic behavior of the sensor were evaluated.

View Article and Find Full Text PDF

In this paper, an alternative voltammetric method for the determination of elemental sulphur in cosmetic products is presented. It is based on the decrease of triphenylphosphine oxidation current in the presence of elemental sulphur by using a glassy carbon electrode. A solution of 2% (m/v) acetic acid and 0.

View Article and Find Full Text PDF

A glassy carbon electrode was modified with a TiO-gold nanoparticle hybrid integrated with multi-walled carbon nanotubes in a dihexadecylphosphate film (TiO-Au NP-MWCNT-DHP/GCE) and applied to amperometric determination of ascorbic acid (AA). The modified sensor displays fast charge transfer and shows an irreversible anodic behavior for AA by cyclic voltammetry. Under optimal experimental conditions and using amperometry at 0.

View Article and Find Full Text PDF