During the SARS-CoV-2 pandemic, genome-based wastewater surveillance sequencing has been a powerful tool for public health to monitor circulating and emerging viral variants. As a medium, wastewater is very complex because of its mixed matrix nature, which makes the deconvolution of wastewater samples more difficult. Here we introduce a gold standard dataset constructed from synthetic viral control mixtures of known composition, spiked into a wastewater RNA matrix and sequenced on the Oxford Nanopore Technologies platform.
View Article and Find Full Text PDFBackground: Transposable elements (TEs) are short, mobile DNA elements that are known to play important roles in the genomes of many eukaryotic species. The identification and categorization of these elements is a critical task for many genomic studies, and the continued increase in the number of de novo assembled genomes demands new tools to improve the efficiency of this process. For this reason, we developed RepBox, a suite of Python scripts that combine several pre-existing family-specific TE detection methods into a single user-friendly pipeline.
View Article and Find Full Text PDFWastewater based epidemiology (WBE) has drawn significant attention as an early warning tool to detect and predict the trajectory of COVID-19 cases in a community, in conjunction with public health data. This means of monitoring for outbreaks has been used at municipal wastewater treatment centers to analyze COVID-19 trends in entire communities, as well as by universities and other community living environments to monitor COVID-19 spread in buildings. Sample concentration is crucial, especially when viral abundance in raw wastewater is below the threshold of detection by RT-qPCR analysis.
View Article and Find Full Text PDFThe COVID-19 pandemic has been a source of ongoing challenges and presents an increased risk of illness in group environments, including jails, long-term care facilities, schools, and residential college campuses. Early reports that the SARS-CoV-2 virus was detectable in wastewater in advance of confirmed cases sparked widespread interest in wastewater-based epidemiology (WBE) as a tool for mitigation of COVID-19 outbreaks. One hypothesis was that wastewater surveillance might provide a cost-effective alternative to other more expensive approaches such as pooled and random testing of groups.
View Article and Find Full Text PDFTransgenic crops have been utilized for decades to enhance agriculture and more recently have been applied as bioreactors for manufacturing pharmaceuticals. Recently, we investigated the gene expression profiles of several in-house transgenic soybean events, finding one transformant group to be consistently different from our controls. In the present study, we examined polymorphisms and sequence variations in the exomes of the same transgenic soybean events.
View Article and Find Full Text PDFHexaploid oat ( L., 2 = 6 = 42) is a member of the Poaceae family and has a large genome (∼12.5 Gb) containing 21 chromosome pairs from three ancestral genomes.
View Article and Find Full Text PDFBackground: Hard ticks (family Ixodidae) are obligatory hematophagous ectoparasites of worldwide medical and veterinary importance. The haploid genomes of multiple species of ixodid ticks exceed 1 Gbp, prompting questions regarding gene, segmental and whole genome duplication in this phyletic group. The availability of the genome assembly for the black legged tick, Ixodes scapularis, and transcriptome datasets for multiple species of ticks offers an opportunity to assess the contribution of gene duplication to the genome.
View Article and Find Full Text PDFTransgenic crops have become a staple in modern agriculture, and are typically characterized using a variety of molecular techniques involving proteomics and metabolomics. Characterization of the transgene insertion site is of great interest, as disruptions, deletions, and genomic location can affect product selection and fitness, and identification of these regions and their integrity is required for regulatory agencies. Here, we present CONTRAILS (Characterization of Transgene Insertion Locations with Sequencing), a straightforward, rapid and reproducible method for the identification of transgene insertion sites in highly complex and repetitive genomes using low coverage paired-end Illumina sequencing and traditional PCR.
View Article and Find Full Text PDFBackground: Soybean (Glycine max) has been bred for thousands of years to produce seeds rich in protein for human and animal consumption, making them an appealing bioreactor for producing valuable recombinant proteins at high levels. However, the effects of expressing recombinant protein at high levels on bean physiology are not well understood. To address this, we investigated whether gene expression within transgenic soybean seed tissue is altered when large amounts of recombinant proteins are being produced and stored exclusively in the seeds.
View Article and Find Full Text PDFBackground: Oxidative stress caused by ground level ozone is a contributor to yield loss in a number of important crop plants. Soybean (Glycine max) is considered to be ozone sensitive, and current research into its response to oxidative stress is limited. To better understand the genetic response in soybean to oxidative stress, an RNA-seq analysis of two soybean cultivars was performed comparing an ozone intolerant cultivar (Mandarin-Ottawa) and an ozone resistant cultivar (Fiskeby III) following exposure to ozone.
View Article and Find Full Text PDFStat Appl Genet Mol Biol
June 2013
The explosion of data in evolutionary bioinformatics has led to sometimes ad hoc, incomplete and even inaccurate data analyses. Taking dS data, namely, data on synonymous substitutions per synonymous sites, we go through a statistical analysis for modeling the time since duplications of genes. We explore the shortcomings of previous analyses, especially with a view towards their effect on inference for the gene duplication process.
View Article and Find Full Text PDFPolyploidy is generally not tolerated in animals, but is widespread in plant genomes and may result in extensive genetic redundancy. The fate of duplicated genes is poorly understood, both functionally and evolutionarily. Soybean (Glycine max L.
View Article and Find Full Text PDFA set of 2486 single nucleotide polymorphisms (SNPs) were compiled in chickpea using four approaches, namely (i) Solexa/Illumina sequencing (1409), (ii) amplicon sequencing of tentative orthologous genes (TOGs) (604), (iii) mining of expressed sequence tags (ESTs) (286) and (iv) sequencing of candidate genes (187). Conversion of these SNPs to the cost-effective and flexible throughput Competitive Allele Specific PCR (KASPar) assays generated successful assays for 2005 SNPs. These marker assays have been designated as Chickpea KASPar Assay Markers (CKAMs).
View Article and Find Full Text PDFFunct Integr Genomics
November 2012
Regulation of gene transcription and post-transcriptional processes is critical for proper development, genome integrity, and stress responses in plants. Many genes involved in the key processes of transcriptional and post-transcriptional regulation have been well studied in model diploid organisms. However, gene and genome duplication may alter the function of the genes involved in these processes.
View Article and Find Full Text PDFThe last several years have seen revolutionary advances in DNA sequencing technologies with the advent of next-generation sequencing (NGS) techniques. NGS methods now allow millions of bases to be sequenced in one round, at a fraction of the cost relative to traditional Sanger sequencing. As costs and capabilities of these technologies continue to improve, we are only beginning to see the possibilities of NGS platforms, which are developing in parallel with online availability of a wide range of biological data sets and scientific publications and allowing us to address a variety of questions not possible before.
View Article and Find Full Text PDFPigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences and a genetic map, we assembled into scaffolds representing 72.
View Article and Find Full Text PDFThe likelihood of duplicate gene retention following polyploidy varies by functional properties (e.g. gene ontologies or protein family domains), but little is known about the effects of whole-genome duplication on gene networks related by a common physiological process.
View Article and Find Full Text PDFBackground: Common bean (Phaseolus vulgaris L.) is the most important legume for direct human consumption and the goal of this study was to integrate a recently constructed physical map for the species with a microsatellite based genetic map using a BAC library from the genotype G19833 and the recombinant inbred line population DOR364 x G19833.
Results: We searched for simple sequence repeats (SSRs) in the 89,017 BAC-end sequences (BES) from the physical map and genetically mapped any polymorphic BES-SSRs onto the genetic map.
During polarized growth and tissue morphogenesis, cells must reorganize their cytoplasm and change shape in response to growth signals. Dynamic polymerization of actin filaments is one cellular component of polarized growth, and the actin-related protein 2/3 (ARP2/3) complex is an important actin filament nucleator in plants. ARP2/3 alone is inactive, and the Arabidopsis thaliana WAVE complex translates Rho-family small GTPase signals into an ARP2/3 activation response.
View Article and Find Full Text PDFExtended comparison of gene sequences found on homeologous soybean Bacterial Artificial Chromosomes to Medicago truncatula and Arabidopsis thaliana genomic sequences demonstrated a network of synteny within conserved regions interrupted by gene addition and/or deletions. Consolidation of gene order among all 3 species provides a picture of ancestral gene order. The observation supports a genome history of fractionation resulting from gene loss/addition and rearrangement.
View Article and Find Full Text PDF