Introduction: Chagas cardiomyopathy, a disease caused by () infection, is a major contributor to heart failure in Latin America. There are significant gaps in our understanding of the mechanism for infection of human cardiomyocytes, the pathways activated during the acute phase of the disease, and the molecular changes that lead to the progression of cardiomyopathy.
Methods: To investigate the effects of on human cardiomyocytes during infection, we infected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) with the parasite and analyzed cellular, molecular, and metabolic responses at 3 hours, 24 hours, and 48 hours post infection (hpi) using transcriptomics (RNAseq), proteomics (LC-MS), and metabolomics (GC-MS and Seahorse) analyses.
Testing of large populations for virus infection is now a reality worldwide due to the coronavirus (SARS-CoV-2) pandemic. The demand for SARS-CoV-2 testing using alternatives other than PCR led to the development of mass spectrometry (MS)-based assays. However, MS for SARS-CoV-2 large-scale testing have some downsides, including complex sample preparation and slow data analysis.
View Article and Find Full Text PDFData-independent acquisition (DIA) allows comprehensive proteome coverage, while it also potentially works as a unified protocol to determine a multitude of proteins found in blood. Because of its high specificity, mass spectrometry may greatly reduce the interference observed in other assays to evaluate blood markers. Here, we combined DIA with volumetric absorptive microsampling (VAMS) and automated proteomics sample processing in a platform to assess clinical markers.
View Article and Find Full Text PDFUnlabelled: The main bottleneck in studies aiming to identify novel biomarkers in acute kidney injury (AKI) has been the identification of markers that are organ and process specific. Here, we have used different tissues from a controlled porcine renal ischemia/reperfusion (I/R) model to identify new, predominantly renal biomarker candidates for kidney disease. Urine and serum samples were analyzed in pre-ischemia, ischemia (60min) and 4, 11 and 16h post-reperfusion, and renal cortex samples after 24h of reperfusion.
View Article and Find Full Text PDFEndometriosis is a chronic gynecological condition that affects 10-32% of women of reproductive age and may lead to infertility. The study of protein profiles in follicular fluid may assist in elucidating possible biomarkers related to this disease. For this, follicular fluid samples were obtained from women with tubal factor or minimal male factor infertility who had pregnancy outcomes after in vitro fertilization (IVF) treatment (control group, n = 10), women with endometriosis (endometriosis group, n = 10), along with the endometrioma from these same patients were included (endometrioma group, n = 10).
View Article and Find Full Text PDF