Publications by authors named "Jessica R Vargas"

Bisphenol A (BPA) belongs to a group of chemicals used in the production of polycarbonate, polysulfone, and polyethersulfone which are used, among other applications, in the manufacture of dialyzers. While exposure to BPA is widespread in the general population, dialysis patients represent a population with potentially chronic parenteral BPA exposures. To assess the potential risk of BPA exposure to dialysis patients through dialyzer use, exposure estimates were calculated based on BPA levels measured by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry following extractions from dialyzers manufactured by Fresenius Medical Care.

View Article and Find Full Text PDF

Inorganic polyphosphate (polyP) is an often-overlooked biopolymer of phosphate residues present in living cells. PolyP is associated with many essential biological roles. Despite interest in polyP's function, most studies have been limited to extracellular or isolated protein experiments, as polyanionic polyP does not traverse the nonpolar membrane of cells.

View Article and Find Full Text PDF

Functional delivery of mRNA to tissues in the body is key to implementing fundamentally new and potentially transformative strategies for vaccination, protein replacement therapy, and genome editing, collectively affecting approaches for the prevention, detection, and treatment of disease. Broadly applicable tools for the efficient delivery of mRNA into cultured cells would advance many areas of research, and effective and safe in vivo mRNA delivery could fundamentally transform clinical practice. Here we report the step-economical synthesis and evaluation of a tunable and effective class of synthetic biodegradable materials: charge-altering releasable transporters (CARTs) for mRNA delivery into cells.

View Article and Find Full Text PDF

Inositol pyrophosphates, such as diphospho-myo-inositol pentakisphosphates (InsP7), are an important family of signalling molecules, implicated in many cellular processes and therapeutic indications including insulin secretion, glucose homeostasis and weight gain. To understand their cellular functions, chemical tools such as photocaged analogues for their real-time modulation in cells are required. Here we describe a concise, modular synthesis of InsP7 and caged InsP7.

View Article and Find Full Text PDF

A highly versatile and step-economical route to a new class of guanidinium-rich molecular transporters and evaluation of their ability to complex, deliver, and release siRNA are described. These new drug/probe delivery systems are prepared in only two steps, irrespective of length or composition, using an organocatalytic ring-opening co-oligomerization of glycerol-derived cyclic carbonate monomers incorporating either protected guanidine or lipid side chains. The resultant amphipathic co-oligomers are highly effective vehicles for siRNA delivery, providing an excellent level of target protein suppression (>85%).

View Article and Find Full Text PDF

Multidrug resistance (MDR) is a major cause of chemotherapy failure in the clinic. Drugs that were once effective against naïve disease subsequently prove ineffective against recurrent disease, which often exhibits an MDR phenotype. MDR can be attributed to many factors; often dominating among these is the ability of a cell to suppress or block drug entry through upregulation of membrane-bound drug efflux pumps.

View Article and Find Full Text PDF

All living systems require biochemical barriers. As a consequence, all drugs, imaging agents, and probes have targets that are either on, in, or inside of these barriers. Fifteen years ago, we initiated research directed at more fully understanding these barriers and at developing tools and strategies for breaching them that could be of use in basic research, imaging, diagnostics, and medicine.

View Article and Find Full Text PDF