Introduction: Bariatric surgery is an effective intervention to reduce obesity and improve associated comorbidities. However, its effects on cognitive function are still the subject of debate. Given that the bioavailability of circulating metabolites can influence brain metabolism and cognitive performance, we aimed to assess the effects of bariatric surgery on plasma metabolic profiles and cognitive performance.
View Article and Find Full Text PDFPurpose: Bariatric surgery (BS) has several potential metabolic benefits. However, little is known about its impact on changes in the inflammatory potential of diet and its effect on inflammatory and metabolic markers. This study aimed to assess the short-term beneficial effects of BS on dietary inflammatory potential and inflammatory and metabolic markers.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
August 2023
Alzheimer's disease is the most common form of dementia. One of its pathological hallmarks is Aβ accumulation, which is influenced by APOE genotype and expression, as well as by sleep homeostasis. However, conflicting mechanisms for APOE roles in Aβ clearance have been reported, and the relationship between APOE and sleep also remains unclear.
View Article and Find Full Text PDFObjective: Obesity is one of the modifiable risk factors for dementia. Insulin resistance, the abundance of advanced glycated end-products, and inflammation are some of the mechanisms associated with the lower cognitive performance observed in obesity. This study aims to evaluate the cognitive function of subjects with distinct degrees of obesity, comparing class I and II obesity (OBI/II) to class III obesity (OBIII), and to investigate metabolic markers that can distinguish OBIII from OBI/II.
View Article and Find Full Text PDFBackground: previous studies have shown that muscle atrophy is observed after sleep deprivation (SD) protocols; however, the mechanisms responsible are not fully understood. Muscle trophism can be modulated by several factors, including energy balance (positive or negative), nutritional status, oxidative stress, the level of physical activity, and disuse. The metabolic differences that exist in different types of muscle fiber may also be the result of different adaptive responses.
View Article and Find Full Text PDFIron deficiency is a public health problem that affects all age groups. Its main consequence is anemia, but it can also affect cognitive functions. Although the negative effects of iron deficiency on cognitive function have been extensively described, the underlying mechanism has not been fully investigated.
View Article and Find Full Text PDFPrP is a glycoprotein capable to interact with several molecules and mediates diverse signaling pathways. Among numerous ligands, laminin (LN) is known to promote neurite outgrowth and memory consolidation, while amyloid-beta oligomers (Aβo) trigger synaptic dysfunction. In both pathways, mGluR1 is recruited as co-receptor.
View Article and Find Full Text PDFHematol Transfus Cell Ther
August 2019
Background: This study aimed to describe the incidence, microbiological profile, and risk factors associated with bacteremia in pediatric patients with hematopoietic stem cell transplantation (HSCT).
Methods: A retrospective cohort study was performed on patients under 18 years old who underwent HSCT due to any indication, between January 2012 and January 2017. The patient data were collected from the first 100 days post-HSCT.
Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrP) and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism.
View Article and Find Full Text PDFCellular prion protein (PrP(C)) is a glycoprotein of the plasma membrane that plays pleiotropic functions by interacting with multiple signaling complexes at the cell surface. Recently, a number of studies have reported the involvement of PrP(C) in dopamine metabolism and signaling, including its interactions with tyrosine hydroxylase (TH) and dopamine receptors. However, the outcomes reported by independent studies are still debatable.
View Article and Find Full Text PDF