Publications by authors named "Jessica Pilar McLin"

Previous studies have provided evidence that a quantitative trait locus (QTL) on the distal part of chromosome 18 (chr18) is a major determinant of vulnerability to hippocampal neurodegeneration following kainic acid (KA)-induced seizures in inbred mouse strains. We assessed excitotoxic vulnerability in two congenic, "genome tagged" mouse strains carrying segments of either distal or proximal/medial chr18 from vulnerable DBA/2J mice on a resistant C57BL/6 background. Systemic KA injections triggered brain-wide neurodegeneration in the distal chr18 congenic strain, and specifically in the hilus of the dentate gyrus, but not in CA3.

View Article and Find Full Text PDF

In mice, the genetic background determines susceptibility to hippocampal neurodegeneration induced by the excitotoxin kainic acid (KA). If genetic background plays as significant a role in the striatum, the area most affected in Huntington's disease (HD), it is important to characterize intrinsic differences in neuronal susceptibility in mouse strains used in HD models. This study was performed to investigate whether strain differences of different HD mouse models are determinants of striatal resistance to excitotoxicity.

View Article and Find Full Text PDF

We assessed inbred, outbred and hybrid mouse strains for susceptibility to seizures and neurodegeneration induced by systemic administration of kainic acid (KA). Each strain showed a unique pattern of susceptibility to seizures as assessed by the dose necessary to induce continuous tonic clonic seizures, progression through six seizure levels, the number of mice that failed to satisfy seizure criteria, and seizure-induced mortality. In general, the C57BL/6, ICR, FVB/N, and BALB/c strains were resistant to seizures while the C57BL/10, DBA/2 J, and F1 C57BL/6*CBA/J strains were vulnerable.

View Article and Find Full Text PDF