IEEE Trans Ultrason Ferroelectr Freq Control
September 2022
A varifocal concave-convex lens using ultrasound and transparent viscoelastic gel is reported. The configuration of the lens is simple and thin, consisting of four pieces of a piezoelectric ultrasound transducer, a glass disk, and a transparent silicone gel film. It uses a combination of the ultrasound resonant flexural standing- and traveling-wave modes excited by in-phase and four-phase drives so that the lens can change its shape to both concave and convex by switching the resonance mode with the same structure.
View Article and Find Full Text PDFNew technologies for adaptive optics are becoming increasingly important for miniature devices such as cell-phone cameras. In particular, motion-free autofocusing and optical image stabilization require sophisticated approaches for alternative lens architectures, materials, and processing to replace multiple solid elements. We discuss a new method, to the best of our knowledge, that provides image stabilization via an annular piezoelectric ceramic that uses ultrasound to drive a liquid crystal layer sandwiched between two circular glass substrates.
View Article and Find Full Text PDFA variable focus optical lens using a thixotropic gel and ultrasonic vibration is discussed. The surface profile of the gel could be deformed via acoustic radiation force generated by ultrasound. A thixotropic gel in which the viscosity was changed by shear stress was employed as a transparent lens material.
View Article and Find Full Text PDFA new type of ultrasonically controlled concave liquid crystal lens based on traveling waves (TWs) with a divided electrode structure and an appropriate driving scheme is proposed in this Letter. The lens uses an annular piezoelectric ceramic divided into four parts for four-phase driving and consists of a liquid crystal layer in a sandwich structure between two circular glass substrates. The lens configuration was simulated by finite element analysis using the Ansys software.
View Article and Find Full Text PDF