Publications by authors named "Jessica N Fitzsimmons"

Article Synopsis
  • Primary production in the sunlit ocean relies on nutrients like nitrate, phosphate, and iron, which are essential for phytoplankton to convert CO2 into biomass.
  • Microbial metabolism in the upper mesopelagic 'twilight zone' (200-500 m) is believed to be constrained by the availability of organic carbon.
  • The study reveals high concentrations of siderophores, indicating iron deficiency in both the surface and twilight zone of the eastern Pacific Ocean, suggesting that low iron availability may limit microbial metabolism across larger areas of the ocean, impacting carbon storage.
View Article and Find Full Text PDF

The potential mining of deep-sea polymetallic nodules has been gaining increasing attention due to their enrichment in metals essential for a low-carbon future. To date, there have been few scientific studies concerning the geochemical consequences of dewatered mining waste discharge into the pelagic water column, which can inform best practices in future mining operations. Here, we report the results of laboratory incubation experiments that simulate mining discharge into anoxic waters such as those that overlie potential mining sites in the North Pacific Ocean.

View Article and Find Full Text PDF

Reversible scavenging, the oceanographic process by which dissolved metals exchange onto and off sinking particles and are thereby transported to deeper depths, has been well established for the metal thorium for decades. Reversible scavenging both deepens the elemental distribution of adsorptive elements and shortens their oceanic residence times in the ocean compared to nonadsorptive metals, and scavenging ultimately removes elements from the ocean via sedimentation. Thus, it is important to understand which metals undergo reversible scavenging and under what conditions.

View Article and Find Full Text PDF

The micronutrient iron plays a major role in setting the magnitude and distribution of primary production across the global ocean. As such, an understanding of the sources, sinks, and internal cycling processes that drive the oceanic distribution of iron is key to unlocking iron's role in the global carbon cycle and climate, both today and in the geologic past. Iron isotopic analyses of seawater have emerged as a transformative tool for diagnosing iron sources to the ocean and tracing biogeochemical processes.

View Article and Find Full Text PDF

Galveston Bay is an anthropogenic-influenced estuary where industrial runoff, wastewater, and shipping vessel discharges enter the bay alongside natural freshwaters. Here, heavy metal concentrations in Galveston Bay surface sediment (2-year quarterly time-series) and a single sediment core are presented to explore the anthropogenic and geochemical controls on the spatiotemporal distributions, fluxes, sources, and potential toxicity of metals within this estuary. Samples were leached to distinguish authigenic sediment coatings from geogenic crystalline material.

View Article and Find Full Text PDF

Palmer Deep (PD) is one of several regional hotspots of biological productivity along the inner shelf of the West Antarctic Peninsula. The proximity of hotspots to shelf-crossing deep troughs has led to the 'canyon hypothesis', which proposes that circumpolar deep water flowing shoreward along the canyons is upwelled on the inner shelf, carrying nutrients including iron (Fe) to surface waters, maintaining phytoplankton blooms. We present here full-depth profiles of dissolved and particulate Fe and manganese (Mn) from eight stations around PD, sampled in January and early February of 2015 and 2016, allowing the first detailed evaluation of Fe sources to the area's euphotic zone.

View Article and Find Full Text PDF

The temporal dynamics of phytoplankton growth and activity have large impacts on fluxes of matter and energy, yet obtaining in situ metabolic measurements of sufficient resolution for even dominant microorganisms remains a considerable challenge. We performed Lagrangian diel sampling with synoptic measurements of population abundances, dinitrogen (N) fixation, mortality, productivity, export and transcription in a bloom of Crocosphaera over eight days in the North Pacific Subtropical Gyre (NPSG). Quantitative transcriptomic analyses revealed clear diel oscillations in transcript abundances for 34% of Crocosphaera genes identified, reflecting a systematic progression of gene expression in diverse metabolic pathways.

View Article and Find Full Text PDF

Nearly all iron dissolved in the ocean is complexed by strong organic ligands of unknown composition. The effect of ligand composition on microbial iron acquisition is poorly understood, but amendment experiments using model ligands show they can facilitate or impede iron uptake depending on their identity. Here we show that siderophores, organic compounds synthesized by microbes to facilitate iron uptake, are a dynamic component of the marine ligand pool in the eastern tropical Pacific Ocean.

View Article and Find Full Text PDF

Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on recent abyssal dFe enrichments near hydrothermal vents, however, the leaky vent hypothesis [Toner BM, et al. (2012) Oceanography 25(1):209-212] argues that some hydrothermal Fe persists in the dissolved phase and contributes a significant flux of dFe to the global ocean.

View Article and Find Full Text PDF

Organic ligands dominate the speciation of iron in the ocean. Little is known, however, about the chemical composition and distribution of these compounds. Here, we describe a method to detect low concentrations of organic Fe ligands using reverse-phase high-performance liquid chromatography (HPLC) tandem multicollector inductively coupled plasma mass spectrometry.

View Article and Find Full Text PDF

Background: Chemical communication plays a critical role in sexual selection and speciation in fishes; however, it is generally assumed that most fish pheromones are passively released since most fishes lack specialized scent glands or scent-marking behavior. Swordtails (genus Xiphophorus) are widely used in studies of female mate choice, and female response to male chemical cues is important to sexual selection, reproductive isolation, and hybridization. However, it is unclear whether females are attending to passively produced cues, or to pheromones produced in the context of communication.

View Article and Find Full Text PDF

A simple and accurate low-blank method has been developed for the analysis of total dissolved copper, cadmium, lead, and iron in a small volume (1.3-1.5 mL per element) of seawater.

View Article and Find Full Text PDF