The first-row transition-metal(II) dithiolates M(SAr) [Ar = CH-2,6-(CH-2,6-iPr); M = Cr (1), Mn (3), Fe (4), Co (5), Ni (6), and Zn (7)] and Cr(SAr) [2; Ar = CH-2,6-(CH-2,4,6-Me)] and the ligand-transfer reagent (NaSAr) (8) are described. In contrast to their M(SAr) (M = Cr, Mn, Fe, Co, Ni, and Zn; Ar = CH-2,6-(CH-2,4,6-iPr)) congeners, which differ from 1 and 3-6 in having p-isopropyl groups on the flanking aryl rings of the terphenyl substituents, compounds 1 and 4-6 display highly bent coordination geometries with S-M-S angles of 109.802(2)° (1), 120.
View Article and Find Full Text PDFThe titanium bisamido complex Ti{N(H)Ar(iPr6)}2 (Ar(iPr6) = C6H3-2,6-(C6H2-2,4,6-(i)Pr3)2 (2), along with its three-coordinate titanium(III) precursor, TiCl{N(H)Ar(iPr6)}2 (1), have been synthesized and characterized. Compound 1 was obtained via the stoichiometric reaction of LiN(H)Ar(iPr6) with the Ti(III) complex TiCl3·2NMe3 in trimethylamine. Reduction of 1 with 1 equiv of KC8 afforded Ti{N(H)Ar(iPr6)}2 (2) in moderate yield.
View Article and Find Full Text PDFThe synthesis and characterization of the first stable two-coordinate vanadium complexes are described. The vanadium(II) primary amido derivative V{N(H)Ar(iPr6)}2 [Ar(iPr6) = C6H3-2,6-(C6H2-2,4,6-iPr3)2] (1) was synthesized via the reaction of LiN(H)Ar(iPr6) with the V(III) complex VCl3·2NMe3 or the V(II) salt [V2Cl3(THF)6](+)I(-) in a 2:1 and 4:1 stoichiometry, respectively. Reaction of the less crowded LiN(H)Ar(Me6) with [V2Cl3(THF)6](+)I(-) afforded V{N(H)Ar(Me6)}2 [Ar(Me6) = C6H3-2,6-(C6H2-2,4,6-Me3)2] (2), which has a nonlinear [N-V-N = 123.
View Article and Find Full Text PDFThe mechanism of the reaction of olefins and hydrogen with dimetallenes ArMMAr (Ar = aromatic group; M = Al or Ga) was studied by density functional theory calculations and experimental methods. The digallenes, for which the most experimental data are available, are extensively dissociated to gallanediyl monomers, :GaAr, in hydrocarbon solution, but the calculations and experimental data showed also that they react with simple olefins, such as ethylene, as intact ArGaGaAr dimers via stepwise [2 + 2 + 2] cycloadditions due to their considerably lower activation barriers vis-à-vis the gallanediyl monomers, :GaAr. This pathway was preferred over the [2 + 2] cycloaddition of olefin to monomeric :GaAr to form a gallacyclopropane ring with subsequent dimerization to yield the 1,2-digallacyclobutane intermediate and, subsequently, the 1,4-digallacyclohexane product.
View Article and Find Full Text PDFThe synthesis and characterization of the mononuclear chromium(II) terphenyl substituted primary amido-complexes Cr{N(H)Ar(Pr(i)(6))}(2) (Ar(Pr(i)(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-(i)Pr(3))(2) (1), Cr{N(H)Ar(Pr(i)(4))}(2) (Ar(Pr(i)(4)) = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2) (2), Cr{N(H)Ar(Me(6))}(2) (Ar(Me(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2) (4), and the Lewis base adduct Cr{N(H)Ar(Me(6))}(2)(THF) (3) are described. Reaction of the terphenyl primary amido lithium derivatives Li{N(H)Ar(Pr(i)(6))} and Li{N(H)Ar(Pr(i)(4))} with CrCl(2)(THF)(2) in a 2:1 ratio afforded complexes 1 and 2, which are extremely rare examples of two coordinate chromium and the first stable chromium amides to have linear coordinated high-spin Cr(2+). The reaction of the less crowded terphenyl primary amido lithium salt Li{N(H)Ar(Me(6))} with CrCl(2)(THF)(2) gave the tetrahydrofuran (THF) complex 3, which has a distorted T-shaped metal coordination.
View Article and Find Full Text PDF