Publications by authors named "Jessica Moreland"

Neutrophils, polymorphonuclear leukocytes (PMN), express numerous pattern recognition receptors, including TLRs, capable of recognizing a wide variety of pathogens. Receptor engagement initiates a cascade of PMN responses with some occurring in seconds, and some requiring de novo protein synthesis over the course of many hours. Although numerous species of bacteria and bacterial products have been shown to activate PMN via TLRs, the signaling intermediates required for distinct PMN responses have not been well-defined in human PMN.

View Article and Find Full Text PDF

The chronic inflammatory component of asthma is propagated by granulocytes, including neutrophils and eosinophils, in the peripheral circulation and airway. Previous studies have suggested that these cells have an altered expression of adhesion-related molecules and a propensity for the release of granule contents that may contribute to tissue damage and enhance inflammatory complications in patients with status asthmaticus. The goal of this prospective cohort study at a tertiary care pediatric hospital with a large population of asthma patients was to assess the role of granulocyte-based inflammation in the development of asthma exacerbation.

View Article and Find Full Text PDF

Excessive release of neutrophil extracellular traps (NETs) has been reported in various human pathologies, including COVID-19 patients. Elevated NET levels serve as a biomarker, indicating increased coagulopathy and immunothrombosis risks in these patients. Traditional immunoassays employed to quantify NET release focus on bulk measurements of released chromatin in simplified microenvironments.

View Article and Find Full Text PDF

Modulation of the immune response to initiate and halt the inflammatory process occurs both at the site of injury as well as systemically. Due to the evolving role of cellular metabolism in regulating cell fate and function, tendon injuries that undergo normal and aberrant repair were evaluated by metabolic profiling to determine its impact on healing outcomes. Metabolomics revealed an increasing abundance of the immunomodulatory metabolite itaconate within the injury site.

View Article and Find Full Text PDF

Severe COVID-19 is characterized by an increase in the number and changes in the function of innate immune cells including neutrophils. However, it is not known how the metabolome of immune cells changes in patients with COVID-19. To address these questions, we analyzed the metabolome of neutrophils from patients with severe or mild COVID-19 and healthy controls.

View Article and Find Full Text PDF

Background: As people with Cystic Fibrosis (CF) live longer, extra-pulmonary complications such as CF-related bone disease (CFBD) are becoming increasingly important. The etiology of CFBD is poorly understood but is likely multifactorial. Bones undergo continuous remodeling via pathways including RANK (receptor activator of NF-κB)/sRANKL (soluble ligand)/OPG (osteoprotegerin).

View Article and Find Full Text PDF

Severe lung inflammation is common in life-threatening coronavirus disease 2019 (COVID-19). This study tested the hypothesis that polymorphonuclear (PMN, neutrophil) phenotype early in the course of disease progression would predict peak lung disease severity in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is increasingly evident that PMN activation contributes to tissue injury resulting from extracellular reactive oxygen species generation, granule exocytosis with release of proteases, neutrophil extracellular trap (NET) formation, and release of cytokines.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is a chronic inflammatory condition sometimes complicated by acute diabetic ketoacidosis (DKA). A subset of patients with T1D develop DKA independent of known risk factors. This study tested the hypothesis that circulating polymorphonuclear leukocytes (PMN) from children with T1D and DKA would exhibit a primed phenotype and that the signature would be unique in patients predisposed to have DKA.

View Article and Find Full Text PDF

Neutrophils, polymorphonuclear leukocytes (PMN), play a critical role in the innate immune response to , a pathogen that continues to be associated with significant morbidity and mortality. Neutrophil extracellular trap (NET) formation is involved in ensnaring and killing of , but this host-pathogen interaction also leads to host tissue damage. Importantly, NET components including neutrophil proteases are under consideration as therapeutic targets in a variety of disease processes.

View Article and Find Full Text PDF

Neutrophils, polymorphonuclear (PMN) leukocytes, play an important role in the early innate immune response to infection in the lung. Interactions between PMN and mycobacterial lipids impact the activation state of these migrated cells with consequences for the surrounding tissue in terms of resolution versus ongoing inflammation. We hypothesized that lipoarabinomannan from ( LAM) would prime human PMN in a TLR2-dependent manner and investigated this with specific comparison with the purified synthetic TLR2 agonists, PamCSK and FSL-1.

View Article and Find Full Text PDF

The mortality rate of patients with critical illness has decreased significantly over the past two decades, but the rate of decline has slowed recently, with organ dysfunction as a major driver of morbidity and mortality. Among patients with the systemic inflammatory response syndrome (SIRS), acute lung injury is a common component with serious morbidity. Previous studies in our laboratory using a murine model of SIRS demonstrated a key role for NADPH oxidase 2 (Nox2)-derived reactive oxygen species in the resolution of inflammation.

View Article and Find Full Text PDF

Acute lung injury (ALI), developing as a component of the systemic inflammatory response syndrome (SIRS), leads to significant morbidity and mortality. Reactive oxygen species (ROS), produced in part by the neutrophil NADPH oxidase 2 (Nox2), have been implicated in the pathogenesis of ALI. Previous studies in our laboratory demonstrated the development of pulmonary inflammation in Nox2-deficient (gp91) mice that was absent in WT mice in a murine model of SIRS.

View Article and Find Full Text PDF

Objectives: Infants with congenital heart disease frequently require cardiopulmonary bypass, which causes systemic inflammation. The goal of this study was to determine if neutrophil phenotype and activation status predicts the development of inflammatory complications following cardiopulmonary bypass.

Design: Prospective cohort study.

View Article and Find Full Text PDF

Severe trauma may cause refractory life-threatening respiratory failure requiring extracorporeal membrane oxygenation (ECMO). Concurrent traumatic brain injury, however, complicates the use of ECMO because of the major risk of intracranial bleeding with systemic anticoagulation. Craniotomy and/or craniectomy for hematoma evacuation during ECMO are extremely high-risk procedures secondary to ongoing anticoagulation, and there are only a few such case reports in the literature.

View Article and Find Full Text PDF

Neutrophil (polymorphonuclear leukocyte) activation with release of granule contents plays an important role in the pathogenesis of acute lung injury, prompting clinical trials of inhibitors of neutrophil elastase. Despite mounting evidence for neutrophil-mediated host tissue damage in a variety of disease processes, mechanisms regulating azurophilic granule exocytosis at the plasma membrane, and thus release of elastase and other proteases, are poorly characterized. We hypothesized that azurophilic granule exocytosis would be enhanced under priming conditions similar to those seen during acute inflammatory events and during chronic inflammatory disease, and selected the cytokine TNF-α to model this in vitro.

View Article and Find Full Text PDF

Interferon Regulatory Factor (IRF) 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line.

View Article and Find Full Text PDF

Polymorphonuclear leukocytes (PMN) achieve an intermediate or primed state of activation following stimulation with certain agonists. Primed PMN have enhanced responsiveness to subsequent stimuli, which can be beneficial in eliminating microbes but may cause host tissue damage in certain disease contexts, including sepsis. As PMN priming by TLR4 agonists is well described, we hypothesized that ligation of TLR2/1 or TLR2/6 would prime PMN.

View Article and Find Full Text PDF

Background: Hematologic variables are often analyzed in animal analogs during the investigation of complex disease etiologies such as necrotizing enterocolitis. However, reference intervals (RI) can vary depending on animal strain, age, and sampling site. Reference intervals have been published for adult C57BL/6J mice, but not newborn C57BL/6J mice.

View Article and Find Full Text PDF

Systemic inflammatory response syndrome (SIRS) is a common clinical condition in patients in intensive care units that can lead to complications, including multiple organ dysfunction syndrome (MODS). MODS carries a high mortality rate, and it is unclear why some patients resolve SIRS, whereas others develop MODS. Although oxidant stress has been implicated in the development of MODS, several recent studies have demonstrated a requirement for NADPH oxidase 2 (NOX2)-derived oxidants in limiting inflammation.

View Article and Find Full Text PDF

The endogenous generation of reactive oxygen species (ROS), previously perceived as a detrimental by-product of cellular processes, is now recognized as a critical component of intracellular signaling. Exploration of these biological signaling functions requires understanding the complex redox biochemistry and recognizing the compartment-specific elements of ROS generation. The endosomal compartment is increasingly recognized as a source for NADPH oxidase (NOX)-generated signaling ROS.

View Article and Find Full Text PDF

The systemic inflammatory response syndrome (SIRS) is a clinical condition occurring in intensive care unit patients as a consequence of both infectious and noninfectious insults. The mechanisms underlying resolution of SIRS are not well characterized. NOX2 (NADPH oxidase 2)-derived reactive oxygen species are critical for killing of certain pathogens by polymorphonuclear leukocytes (PMN).

View Article and Find Full Text PDF

Acute respiratory infections are responsible for more than 4 million deaths each year. Neutrophils play an essential role in the innate immune response to lung infection. These cells have an armamentarium of pattern recognition molecules and antimicrobial agents that identify and eliminate pathogens.

View Article and Find Full Text PDF

NADPH oxidase 2 (Nox2)-generated reactive oxygen species (ROS) are critical for neutrophil (polymorphonuclear leukocyte (PMN)) microbicidal function. Nox2 also plays a role in intracellular signaling, but the site of oxidase assembly is unknown. It has been proposed to occur on secondary granules.

View Article and Find Full Text PDF