Publications by authors named "Jessica M Labonte"

Article Synopsis
  • * Many species in these environments lack genetic data, but recent molecular analyses reveal a high prevalence of undocumented species, suggesting significant gaps in current biodiversity assessments.
  • * The study utilized molecular techniques, analyzing 376 COI and 154 16S rRNA sequences, uncovering cryptic species and misidentified taxa, which underscores the importance of genetic approaches for improving conservation efforts in these endangered habitats.
View Article and Find Full Text PDF

Perfluoroalkyl substances (PFAS) are of great ecological concern, however, exploration of their impact on bacteria-phytoplankton consortia is limited. This study employed a bioassay approach to investigate the effect of unary exposures of increasing concentrations of PFAS (perfluorooctane sulfonate (PFOS) and 6:2 fluorotelomer sulfonate (6:2 FTS)) on microbial communities from the northwestern Gulf of Mexico. Each community was examined for changes in growth and photophysiology, exudate production and shifts in community structure (16S and 18S rRNA genes).

View Article and Find Full Text PDF

Though toxins produced during harmful blooms of cyanobacteria present diverse risks to public health and the environment, surface water quality surveillance of cyanobacterial toxins is inconsistent, spatiotemporally limited, and routinely relies on ELISA kits to estimate total microcystins (MCs) in surface waters. Here, we employed liquid chromatography tandem mass spectrometry to examine common cyanotoxins, including five microcystins, three anatoxins, nodularin, cylindrospermopsin, and saxitoxin in 20 subtropical reservoirs spatially distributed across a pronounced annual rainfall gradient. Probabilistic environmental hazard analyses identified whether water quality values for cyanotoxins were exceeded and if these exceedances varied spatiotemporally.

View Article and Find Full Text PDF

Cyanobacterial blooms and the toxins they produce pose a growing threat worldwide. Mitigation of such events has primarily focused on phosphorus management and has largely neglected the role of nitrogen. Previous bloom research and proposed management strategies have primarily focused on temperate, dimictic lakes, and less on warm-monomictic systems like those at subtropical latitudes.

View Article and Find Full Text PDF

Estuaries provide many ecosystem services and host a majority of the world's population. Here, the response of microbial communities after a record-breaking flood event in a highly urbanized estuary was followed. Hurricane Harvey (hereafter Harvey) was a category 4 hurricane that made landfall on the Texas coast in 2017 and lashed the Houston area with 1.

View Article and Find Full Text PDF

Viruses are the dominant biological entity in the ocean, play a vital role in biogeochemical cycles, and provide their hosts with novel metabolic capabilities through auxiliary metabolic genes (AMGs). Hurricane Harvey was a category 4 hurricane that made landfall on the Texas coast in 2017 and lashed the Houston area with 1.4-1.

View Article and Find Full Text PDF

A simple, pervasive biological entity in the ocean sheds light on evolution.

View Article and Find Full Text PDF

Microbial interactions influence nearly one-half of the global biogeochemical flux of major elements of the marine ecosystem. Despite their ecological importance, microbial interactions remain poorly understood and even less is known regarding the effects of anthropogenic perturbations on these microbial interactions. The Deepwater Horizon oil spill exposed the Gulf of Mexico to ∼4.

View Article and Find Full Text PDF

Sulfate-reducing bacteria Candidatus Desulforudis audaxviator (CDA) were originally discovered in deep fracture fluids accessed via South African gold mines and have since been found in geographically widespread deep subsurface locations. In order to constrain models for subsurface microbial evolution, we compared CDA genomes from Africa, North America and Eurasia using single cell genomics. Unexpectedly, 126 partial single amplified genomes from the three continents, a complete genome from of an isolate from Eurasia, and metagenome-assembled genomes from Africa and Eurasia shared >99.

View Article and Find Full Text PDF

The predominant model of the role of viruses in the marine trophic web is that of the "viral shunt," where viral infection funnels a substantial fraction of the microbial primary and secondary production back to the pool of dissolved organic matter. Here, we analyzed the composition of non-eukaryotic DNA associated with individual cells of small, planktonic protists in the Gulf of Maine (GoM) and the Mediterranean Sea. We found viral DNA associated with a substantial fraction cells from the GoM (51%) and the Mediterranean Sea (35%).

View Article and Find Full Text PDF

Hurricane Harvey was the wettest hurricane in US history bringing record rainfall and widespread flooding in Houston, TX. The resulting storm- and floodwaters largely emptied into the Galveston Bay. Surface water was collected from 10 stations during five cruises to investigate the concentrations and sources of 16 priority polycyclic aromatic hydrocarbons (PAHs), and relative abundances of PAH-degrading bacteria.

View Article and Find Full Text PDF

Phage-host interactions likely play a major role in the composition and functioning of many microbiomes, yet remain poorly understood. Here, we employed single cell genomics to investigate phage-host interactions in a diffuse-flow, low-temperature hydrothermal vent that may be reflective of a broadly distributed biosphere in the subseafloor. We identified putative prophages in 13 of 126 sequenced single amplified genomes (SAGs), with no evidence for lytic infections, which is in stark contrast to findings in the surface ocean.

View Article and Find Full Text PDF

We present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases.

View Article and Find Full Text PDF

Sinking marine oil snow was found to be a major mechanism in the transport of spilled oil from the surface to the deep sea following the Deepwater Horizon (DwH) oil spill. Marine snow formation is primarily facilitated by extracellular polymeric substances (EPS), which are mainly composed of proteins and carbohydrates secreted by microorganisms. While numerous bacteria have been identified to degrade oil, there is a paucity of knowledge on bacteria that produce EPS in response to oil and Corexit exposure in the northern Gulf of Mexico (nGoM).

View Article and Find Full Text PDF

The original version of this Article contained errors in the units of concentration of three reagents listed in the Methods. These errors have all been corrected in both the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Microbial communities living in deeply buried sediment may be adapted to long-term energy limitation as they are removed from new detrital energy inputs for thousands to millions of years. However, sediment layers near the underlying oceanic crust may receive inputs from below that influence microbial community structure and/or activity. As part of the Census of Deep Life, we used 16S rRNA gene tag pyrosequencing on DNA extracted from a spectrum of deep sediment-basement interface samples from the subsurface of the Juan de Fuca Ridge flank (collected on IODP Expedition 327) to examine this possible basement influence on deep sediment communities.

View Article and Find Full Text PDF

Microbial single-cell genomics can be used to provide insights into the metabolic potential, interactions, and evolution of uncultured microorganisms. Here we present WGA-X, a method based on multiple displacement amplification of DNA that utilizes a thermostable mutant of the phi29 polymerase. WGA-X enhances genome recovery from individual microbial cells and viral particles while maintaining ease of use and scalability.

View Article and Find Full Text PDF
Article Synopsis
  • A significant portion of Earth's prokaryotic biomass is found in deep subsurface environments, characterized by lower cellular abundance, slower metabolism, and longer generation times compared to surface ecosystems.
  • Researchers used single-cell genomics to study genetic variability and evidence of horizontal gene transfer (HGT) and viral infections in cells of Candidatus Desulforudis audaxviator collected from a deep fracture in South Africa.
  • Findings revealed that a substantial percentage of genes in single cells were not detected in previous metagenomic analyses, indicating that processes like recombination, HGT, and viral infection are important evolutionary mechanisms for microorganisms in stable deep subsurface habitats.
View Article and Find Full Text PDF

Metagenomic studies have revealed that ssDNA phages from the family Microviridae subfamily Gokushovirinae are widespread in aquatic ecosystems. It is hypothesized that gokushoviruses occupy specialized niches, resulting in differences among genotypes traversing water column gradients. Here, we use degenerate primers that amplify a fragment of the gene encoding the major capsid protein to examine the diversity of gokushoviruses in Saanich Inlet (SI), a seasonally anoxic fjord on the coast of Vancouver Island, BC, Canada.

View Article and Find Full Text PDF

Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus-host relationships, however, has been limited to a minute fraction of cultivated host groups.

View Article and Find Full Text PDF

Much remains to be learned about single-stranded (ss) DNA viruses in natural systems, and the evolutionary relationships among them. One of the eight recognized families of ssDNA viruses is the Microviridae, a group of viruses infecting bacteria. In this study we used metagenomic analysis, genome assembly, and amplicon sequencing of purified ssDNA to show that bacteriophages belonging to the subfamily Gokushovirinae within the Microviridae are genetically diverse and widespread members of marine microbial communities.

View Article and Find Full Text PDF

Single-stranded DNA (ssDNA) viruses are economically important pathogens of plants and animals, and are widespread in oceans; yet, the diversity and evolutionary relationships among marine ssDNA viruses remain largely unknown. Here we present the results from a metagenomic study of composite samples from temperate (Saanich Inlet, 11 samples; Strait of Georgia, 85 samples) and subtropical (46 samples, Gulf of Mexico) seawater. Most sequences (84%) had no evident similarity to sequenced viruses.

View Article and Find Full Text PDF

The distribution of viral genotypes in the ocean and their evolutionary relatedness remain poorly constrained. This paper presents data on the genetic diversity and evolutionary relationships of 1.2-kb DNA polymerase (pol) gene fragments from podoviruses.

View Article and Find Full Text PDF