UVA-driven photooxidative stress in human skin may originate from excitation of specific endogenous chromophores acting as photosensitizers. Previously, we have demonstrated that 3-hydroxypyridine-derived chromophores including B -vitamers (pyridoxine, pyridoxamine and pyridoxal) are endogenous photosensitizers that enhance UVA-induced photooxidative stress in human skin cells. Here, we report that the B -vitamer pyridoxal is a sensitizer of genotoxic stress in human adult primary keratinocytes (HEKa) and reconstructed epidermis.
View Article and Find Full Text PDFD-Penicillamine (3,3-dimethyl-D-cysteine; DP) is an FDA-approved redox-active D-cysteine-derivative with antioxidant, disulfide-reducing, and metal chelating properties used therapeutically for the control of copper-related pathology in Wilson's disease and reductive cystine-solubilization in cystinuria. Based on the established sensitivity of metastatic melanoma cells to pharmacological modulation of cellular oxidative stress, we tested feasibility of using DP for chemotherapeutic intervention targeting human A375 melanoma cells in vitro and in vivo. DP treatment induced caspase-dependent cell death in cultured human metastatic melanoma cells (A375, G361) without compromising viability of primary epidermal melanocytes, an effect not observed with the thiol-antioxidants N-acetyl-L-cysteine (NAC) and dithiothreitol.
View Article and Find Full Text PDFPharmacological induction of oxidative and proteotoxic stress has recently emerged as a promising strategy for chemotherapeutic intervention targeting cancer cells. Guided by a differential phenotypic drug screen for novel lead compounds that selectively induce melanoma cell apoptosis without compromising viability of primary human melanocytes, we have focused on the cyclic pyridinyl-polythiazolyl peptide-antimicrobial thiostrepton. Using comparative gene expression-array analysis, the early cellular stress response induced by thiostrepton was examined in human A375 metastatic melanoma cells and primary melanocytes.
View Article and Find Full Text PDFRecent research suggests that altered redox control of melanoma cell survival, proliferation, and invasiveness represents a chemical vulnerability that can be targeted by pharmacological modulation of cellular oxidative stress. The endoperoxide artemisinin and semisynthetic artemisinin-derivatives including dihydroartemisinin (DHA) constitute a major class of antimalarials that kill plasmodium parasites through induction of iron-dependent oxidative stress. Here, we demonstrate that DHA may serve as a redox chemotherapeutic that selectively induces melanoma cell apoptosis without compromising viability of primary human melanocytes.
View Article and Find Full Text PDF