Curr Opin Cell Biol
April 2023
Dynamin, a 100-kDa GTPase, is one of the most-characterized membrane fission machineries catalyzing vesicle release from plasma membrane during endocytosis. The human genome encodes three dynamins: DNM1, DNM2 and DNM3, with high amino acid similarity but distinct expression patterns. Ever since the discoveries of dynamin mutations associated with human diseases in 2005, dynamin has become a paradigm for studying pathogenic mechanisms of mutant proteins from the aspects of structural biology, cell biology, model organisms as well as therapeutic strategy development.
View Article and Find Full Text PDFInsulin-stimulated translocation of glucose transporter 4 (GLUT4) to plasma membrane of skeletal muscle is critical for postprandial glucose uptake; however, whether the internalization of GLUT4 is also regulated by insulin signaling remains unclear. Here, we discover that the activity of dynamin-2 (Dyn2) in catalyzing GLUT4 endocytosis is negatively regulated by insulin signaling in muscle cells. Mechanistically, the fission activity of Dyn2 is inhibited by binding with the SH3 domain of Bin1.
View Article and Find Full Text PDFDynamin is one of the best-studied membrane fission machineries, which mediates endocytic vesicle pinch-off from the plasma membrane. Among the three dynamin isoforms encoded in mammalian genome, dynamin-2 is the ubiquitously expressed isoform and leads to human muscular or neuronal diseases when mutants causing hyperactivity or hypoactivity of its membrane fission activity occur. While transferrin uptake is the most commonly used assay to measure dynamin activity in cultured cells, here we provide two different methods to quantitatively examine the activity of dynamin in myoblasts and myotubes, i.
View Article and Find Full Text PDFSkeletal muscle requires adequate membrane trafficking and remodeling to maintain its normal structure and functions. Consequently, many human myopathies are caused by mutations in membrane trafficking machinery. The large GTPase dynamin-2 (Dyn2) is best known for catalyzing membrane fission during clathrin-mediated endocytosis (CME), which is critical for cell signaling and survival.
View Article and Find Full Text PDF