Preterm infants are at significantly increased risk for lifelong neurodevelopmental disability with male offspring disproportionately affected. Corticosteroids (such as betamethasone) and magnesium sulphate (MgSO) are administered to women in preterm labor to reduce neurologic morbidity. Despite widespread use of MgSO in clinical practice, its effects on adult offspring are not well known nor have sex-specific differences in therapeutic response been explored.
View Article and Find Full Text PDFActa Neuropathol Commun
August 2013
Background: Blast-induced neurotrauma (BINT) is the signature life threatening injury of current military casualties. Neuroinflammation is a key pathological occurrence of secondary injury contributing to brain damage after blast injury. We have recently demonstrated that blast-triggered complement activation and cytokine release are associated with BINT.
View Article and Find Full Text PDFBackground: Complement is invariably activated during trauma and contributes to tissue injury. Recombinant human decay-accelerating factor (DAF), a complement regulatory protein that inhibits both classical and alternative pathways, improves survival and reduces tissue damage in animal models of tissue injury. The extent to which DAF may facilitate resuscitation in hemorrhaged large animals is not known.
View Article and Find Full Text PDFBlast-induced neurotrauma (BINT) is a major medical concern yet its etiology is largely undefined. Complement activation may play a role in the development of secondary injury following traumatic brain injury; however, its role in BINT is still undefined. The present study was designed to characterize the complement system and adaptive immune-inflammatory responses in a rat model of moderate BINT.
View Article and Find Full Text PDFProtein arginine deiminase activity (PAD) is increased in cancer, rheumatoid arthritis, and ulcerative colitis. Although the link between abnormal PAD activity and disease is clear, the relative contribution of the individual PADs to human disease is not known; there are 5 PAD isozymes in humans. Building on our previous development of F- and Cl-amidine as potent pan-PAD irreversible inhibitors, we describe herein a library approach that was used to identify PAD-selective inhibitors.
View Article and Find Full Text PDFProtein arginine deiminase (PAD) activity is upregulated in a number of human diseases, including rheumatoid arthritis, ulcerative colitis, and cancer. These enzymes, there are five in humans (PADs 1-4 and 6), regulate gene transcription, cellular differentiation, and the innate immune response. Building on our successful generation of F- and Cl-amidine, which irreversibly inhibit all of the PADs, a structure-activity relationship was performed to develop second generation compounds with improved potency and selectivity.
View Article and Find Full Text PDFThe protein arginine deiminases (PAD), which catalyze the hydrolysis of peptidyl-arginine to form peptidyl-citrulline, play important roles in a variety of cell signaling pathways, including apoptosis, differentiation, and transcriptional regulation. In addition to these important cellular roles, PAD activity is dysregulated in multiple human diseases [e.g.
View Article and Find Full Text PDFThe protein arginine deiminases (PADs), which catalyze the hydrolysis of peptidyl-arginine to form peptidyl-citrulline, are potential targets for the development of a rheumatoid arthritis (RA) therapeutic, as well as other human diseases including colitis and cancer. Additionally, these enzymes, and in particular PAD4, appear to play important roles in a variety of cell signaling pathways including apoptosis, differentiation, and transcriptional regulation. To better understand the factors that regulate in vivo PAD4 activity, we set out to design and synthesize a series of activity-based protein profiling (ABPP) reagents that target this enzyme.
View Article and Find Full Text PDFCell Mol Life Sci
February 2011
The recent approvals of anticancer therapeutic agents targeting the histone deacetylases and DNA methyltransferases have highlighted the important role that epigenetics plays in human diseases, and suggested that the factors controlling gene expression are novel drug targets. Protein arginine deiminase 4 (PAD4) is one such target because its effects on gene expression parallel those observed for the histone deacetylases. We demonstrated that F- and Cl-amidine, two potent PAD4 inhibitors, display micromolar cytotoxic effects towards several cancerous cell lines (HL-60, MCF7 and HT-29); no effect was observed in noncancerous lines (NIH 3T3 and HL-60 granulocytes).
View Article and Find Full Text PDF