Polymorphic non-coding variants at the NOS1AP locus have been associated with the common cardiac, metabolic and neurological traits and diseases. Although, in vitro gene targeting-based cellular and biochemical studies have shed some light on NOS1AP function in cardiac and neuronal tissue, to enhance our understanding of NOS1AP function in mammalian physiology and disease, we report the generation of cre recombinase-conditional Nos1ap over-expression transgenic mice (Nos1ap (Tg)). Conditional transgenic mice were generated by the pronuclear injection method and three independent, single-site, multiple copies integration event-based founder lines were selected.
View Article and Find Full Text PDFThe purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization) and denervation (sciatic nerve resection) atrophy.
View Article and Find Full Text PDFMaintaining skeletal muscle mass is essential for general health and prevention of disease progression in various neuromuscular conditions. Currently, no treatments are available to prevent progressive loss of muscle mass in any of these conditions. Hibernating mammals are protected from muscle atrophy despite prolonged periods of immobilization and starvation.
View Article and Find Full Text PDFRationale: Acute lung injury (ALI) is a debilitating condition associated with severe skeletal muscle weakness that persists in humans long after lung injury has resolved. The molecular mechanisms underlying this condition are unknown.
Objectives: To identify the muscle-specific molecular mechanisms responsible for muscle wasting in a mouse model of ALI.
Sarcopenia, a critical loss of muscle mass and function because of the physiological process of aging, contributes to disability and mortality in older adults. It increases the incidence of pathologic fractures, causing prolonged periods of hospitalization and rehabilitation. The molecular mechanisms underlying sarcopenia are poorly understood, but recent evidence suggests that increased transforming growth factor-β (TGF-β) signaling contributes to impaired satellite cell function and muscle repair in aged skeletal muscle.
View Article and Find Full Text PDF