Publications by authors named "Jessica L Rastad"

Our laboratory demonstrated that infection with the murine retrovirus LP-BM5 results in increased numbers of monocytic myeloid-derived suppressor cells (M-MDSCs) and that these M-MDSCs suppress not only T but also B cell responses. Because of the paucity of studies regarding the effects of MDSCs in general on B cells, we focused on these understudied B cell targets for M-MDSC effects on B cell phenotypic and functional parameters. M-MDSCs specifically decreased the proliferation of transitional type 2 (T2) B cells in response to polyclonal stimulation but increased germinal center and Ab-secreting B cell proportions and class-switched Ig production.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that are well described as potent immune regulatory cells during human cancer and murine tumor models. Reports of MDSCs during viral infections remain limited, and their association with immunomodulation of viral diseases is still being defined. Here, we provide an overview of MDSCs or MDSC-like cells identified during viral infections, including murine viral models and human viral diseases.

View Article and Find Full Text PDF

Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production.

View Article and Find Full Text PDF