We quantitatively examine the relative influence of bulk impurities and surface states on the electrical properties of Ge nanowires with and without phosphorus (P) doping. The unintentional impurity concentration in nominally undoped Ge nanowires is less than 2 x 10(17) cm(-3) as determined by atom probe tomography. Surprisingly, P doping of approximately 10(18) cm(-3) reduces the nanowire conductivity by 2 orders of magnitude.
View Article and Find Full Text PDFSemiconductor nanowires show promise for many device applications, but controlled doping with electronic and magnetic impurities remains an important challenge. Limitations on dopant incorporation have been identified in nanocrystals, raising concerns about the prospects for doping nanostructures. Progress has been hindered by the lack of a method to quantify the dopant distribution in single nanostructures.
View Article and Find Full Text PDFWe report the growth of free-standing one-dimensional Ge/Mn-germanide nanowire heterostructures by chemical vapor deposition and provide a detailed description of the growth mechanism. Self-assembled manganese-germanide particles seed the growth of Ge nanowires (GeNWs) and simultaneously elongate along a parallel axis, resulting in syntaxial growth of the two phases. The GeNW growth is limited by GeH 4 decomposition, whereas the germanide growth is limited by reaction of Mn at the growth interface.
View Article and Find Full Text PDFThe potential for the metal nanocatalyst to contaminate vapour-liquid-solid grown semiconductor nanowires has been a long-standing concern, because the most common catalyst material, Au, is highly detrimental to the performance of minority carrier electronic devices. We have detected single Au atoms in Si nanowires grown using Au nanocatalyst particles in a vapour-liquid-solid process. Using high-angle annular dark-field scanning transmission electron microscopy, Au atoms were observed in higher numbers than expected from a simple extrapolation of the bulk solubility to the low growth temperature.
View Article and Find Full Text PDF