The group A Streptococcus (GAS; Streptococcus pyogenes) causes an elaborate array of human diseases. In part, such variability in disease potential is a consequence of GAS manipulating the expression of a catalogue of virulence factors, with regulation occurring at both the transcriptional and posttranscriptional levels. The GAS small regulatory RNA (sRNA) FasX contributes to this regulatory activity, enhancing expression of the thrombolytic agent streptokinase, and reducing expression of collagen (pili) and fibronectin (PrtF1 and PrtF2) -binding adhesins.
View Article and Find Full Text PDFSerotype M28 isolates of the group A (GAS; Streptococcus pyogenes) are nonrandomly associated with cases of puerperal sepsis, a potentially life-threatening infection that can occur in women following childbirth. Previously, we discovered that the 36.3-kb RD2 pathogenicity island, which is present in serotype M28 isolates but lacking from most other isolates, promotes the ability of M28 GAS to colonize the female reproductive tract.
View Article and Find Full Text PDFThe group A Streptococcus (GAS) causes diseases that range from mild (e.g. pharyngitis) to severely invasive (e.
View Article and Find Full Text PDFBackground: Bacterial infections following childbirth-so-called puerperal infections-cause morbidity in 5%-10% of all new mothers. At low frequency, the infection can spread to the blood, resulting in life-threatening sepsis known as puerperal sepsis. Pathogens causing puerperal sepsis include group A Streptococcus (GAS), and epidemiological analyses have identified isolates of a single serotype, M28, as being nonrandomly associated with cases of puerperal sepsis.
View Article and Find Full Text PDFPopulations of a bacterial pathogen, whether recovered from a single patient or from a worldwide study, are often a heterogeneous mix of genetically and phenotypically divergent strains. Such heterogeneity is of value in changing environments and arises via mechanisms such as gene gain or gene mutation. Here, we identify an isolate of serotype M12 group A (GAS) () that has a natural mutation in , which encodes an accessory protein to the virulence-regulating two-component system CovR/CovS (CovR/S).
View Article and Find Full Text PDFIsolates of a given bacterial pathogen often display phenotypic variation, and this can negatively impact public health, for example, by reducing the efficacy of preventative measures. Here, we identify that the human pathogen group A (GAS; ) expresses pili on its cell surface in a serotype-specific manner. Specifically, we show that serotype M3 GAS isolates, which are nonrandomly associated with causing particularly severe and lethal invasive infections, produce negligible amounts of pili relative to serotype M1 and M49 isolates.
View Article and Find Full Text PDFRegulating gene expression during infection is critical to the ability of pathogens to circumvent the immune response and cause disease. This is true for the group A (GAS), a pathogen that causes both invasive (e.g.
View Article and Find Full Text PDFUnlabelled: Group A Streptococcus (GAS) (Streptococcus pyogenes) causes more than 700 million human infections each year. The significant morbidity and mortality rates associated with GAS infections are in part a consequence of the ability of this pathogen to coordinately regulate virulence factor expression during infection. RofA-like protein IV (RivR) is a member of the Mga-like family of transcriptional regulators, and previously we reported that RivR negatively regulates transcription of the hasA and grab virulence factor-encoding genes.
View Article and Find Full Text PDFUnlabelled: The group A Streptococcus (GAS; Streptococcus pyogenes) causes more than 700 million human infections each year. The success of this pathogen can be traced in part to the extensive arsenal of virulence factors that are available for expression in temporally and spatially specific manners. To modify the expression of these virulence factors, GAS use both protein- and RNA-based regulators, with the best-characterized RNA-based regulator being the small regulatory RNA (sRNA) FasX.
View Article and Find Full Text PDFPhenotypic heterogeneity is commonly observed between isolates of a given pathogen. Epidemiological analyses have identified that some serotypes of the group A Streptococcus (GAS) are non-randomly associated with particular disease manifestations. Here, we present evidence that a contributing factor to the association of serotype M3 GAS isolates with severe invasive infections is the presence of a null mutant allele for the orphan kinase RocA.
View Article and Find Full Text PDFBacterial pathogens commonly show intra-species variation in virulence factor expression and often this correlates with pathogenic potential. The group A Streptococcus (GAS) produces a small regulatory RNA (sRNA), FasX, which regulates the expression of pili and the thrombolytic agent streptokinase. As GAS serotypes are polymorphic regarding (a) FasX abundance, (b) the fibronectin, collagen, T-antigen (FCT) region of the genome, which contains the pilus genes (nine different FCT-types), and (c) the streptokinase-encoding gene (ska) sequence (two different alleles), we sought to test whether FasX regulates pilus and streptokinase expression in a serotype-specific manner.
View Article and Find Full Text PDFDespite the public health challenges associated with the emergence of new pathogenic bacterial strains and/or serotypes, there is a dearth of information regarding the molecular mechanisms that drive this variation. Here, we began to address the mechanisms behind serotype-specific variation between serotype M1 and M3 strains of the human pathogen Streptococcus pyogenes (the group A Streptococcus [GAS]). Spatially diverse contemporary clinical serotype M3 isolates were discovered to contain identical inactivating mutations within genes encoding two regulatory systems that control the expression of important virulence factors, including the thrombolytic agent streptokinase, the protease inhibitor-binding protein-G-related α2-macroglobulin-binding (GRAB) protein, and the antiphagocytic hyaluronic acid capsule.
View Article and Find Full Text PDF