Publications by authors named "Jessica L Crisci"

Isolated populations with novel phenotypes present an exciting opportunity to uncover the genetic basis of ecologically significant adaptation, and genomic scans have often, but not always, led to candidate genes directly related to an adaptive phenotype. However, in many cases these populations were established by a severe bottleneck, which can make identifying targets of selection problematic. Here, we simulate severe bottlenecks and subsequent selection on standing variation, mimicking adaptation after establishment of a new small population, such as an island or an artificial selection experiment.

View Article and Find Full Text PDF

With the increasing availability and quality of whole genome population data, various methodologies of population genetic inference are being utilized in order to identify and quantify recent population-level selective events. Though there has been a great proliferation of such methodology, the type-I and type-II error rates of many proposed statistics have not been well-described. Moreover, the performance of these statistics is often not evaluated for different biologically relevant scenarios (e.

View Article and Find Full Text PDF

Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.

View Article and Find Full Text PDF

The recent availability of whole-genome sequencing data affords tremendous power for statistical inference. With this, there has been great interest in the development of polymorphism-based approaches for the estimation of population genetic parameters. These approaches seek to estimate, for example, recently fixed or sweeping beneficial mutations, the rate of recurrent positive selection, the distribution of selection coefficients, and the demographic history of the population.

View Article and Find Full Text PDF

Ever since the first draft of the human genome was completed in 2001, there has been increased interest in identifying genetic changes that are uniquely human, which could account for our distinct morphological and cognitive capabilities with respect to other apes. Recently, draft sequences of two extinct hominin genomes, a Neanderthal and Denisovan, have been released. These two genomes provide a much greater resolution to identify human-specific genetic differences than the chimpanzee, our closest extant relative.

View Article and Find Full Text PDF