Colony stimulating factor 1 receptor (CSF-1R) is a kinase expressed on macrophages and microglia in the brain. It has been recognized as a potential drug and imaging target in treatment of neuroinflammatory diseases and glioblastoma. Despite several attempts, no validated CSF-1R PET tracer is currently available.
View Article and Find Full Text PDFParkinson's disease (PD) is associated with aberrant innate immune responses, including microglial activation and infiltration of peripheral myeloid cells into the central nervous system (CNS). Methods to investigate innate immune activation in PD are limited and have not yet elucidated key interactions between neuroinflammation and peripheral inflammation. Translocator protein 18 kDa (TSPO) PET is a widely evaluated imaging approach for studying activated microglia and peripheral myeloid lineage cells in vivo but has yet to be fully explored in PD.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is a WHO grade IV glioma and the most common malignant, primary brain tumor with a 5-year survival of 7.2%. Its highly infiltrative nature, genetic heterogeneity, and protection by the blood brain barrier (BBB) have posed great treatment challenges.
View Article and Find Full Text PDFBackground: The kinase colony stimulating factor-1 receptor (CSF-1R) has recently been identified as a novel therapeutic target for decreasing tumor associated macrophages and microglia load in cancer treatment. In glioblastoma multiforme (GBM), a high-grade cancer in the brain with extremely poor prognosis, macrophages and microglia can make up to 50% of the total tumor mass. Currently, no non-invasive methods are available for measuring CSF-1R expression in vivo.
View Article and Find Full Text PDFBackground: Tumor hypoxia is a characteristic of paramount importance due to low oxygenation levels in tissue negatively correlating with resistance to traditional therapies. The ability to noninvasively identify such could provide for personalized treatment(s) and enhance survival rates. Accordingly, we recently developed an NIR fluorescent hypoxia-sensitive smart probe (NO -Rosol) for identifying hypoxia via selectively imaging nitroreductase (NTR) activity, which could correlate to oxygen deprivation levels in cells, thereby serving as a proxy.
View Article and Find Full Text PDFSpurred by newly developed drug delivery systems (DDSs), side effects of cancer chemotherapy could be reduced by using multifunctional nanoplatforms. However, the facile synthesis of effective DDSs remains a challenge. Here, a six-arginine-tailed anti-epidermal growth factor receptor (EGFR) affibody was employed to easily synthesize the highly reactive oxygen species (hROS)- and trypsin-responsive 11-mercaptoundecanoic acid-modified gold nanoclusters (MUA-Au NCs) for tumor-targeted drug delivery.
View Article and Find Full Text PDFHypoxia (O ≤ ~1.5%) is an important characteristic of tumor microenvironments that directly correlates with resistance against first-line therapies and tumor proliferation/infiltration. The ability to accurately identify hypoxic tumor cells/tissue could afford tailored therapeutic regimens for personalized treatment, development of more-effective therapies, and discerning the mechanisms underlying disease progression.
View Article and Find Full Text PDFDespite considerable progress with our understanding of glioblastoma multiforme (GBM) and the precise delivery of radiotherapy, the prognosis for GBM patients is still unfavorable with tumor recurrence due to radioresistance being a major concern. We recently developed a cross-linked iron oxide nanoparticle conjugated to azademethylcolchicine (CLIO-ICT) to target and eradicate a subpopulation of quiescent cells, glioblastoma initiating cells (GICs), which could be a reason for radioresistance and tumor relapse. The purpose of our study was to investigate if CLIO-ICT has an additive therapeutic effect to enhance the response of GBMs to ionizing radiation.
View Article and Find Full Text PDFAn optical molecular imaging contrast agent that is tailored toward lymphatic mapping techniques implementing near-infrared (NIR) fluorescence image-guided navigation in the planning and surgical treatment of cancers would significantly aid in enabling the real-time visualization of the potential metastatic tumor-draining lymph node(s) for their needed surgical biopsy and/or removal, thereby ensuring unmissed disease to prevent recurrence and improve patient survival rates. Here, the development of the first NIR fluorescent rosol dye (THQ-Rosol) tailored to overcome the limitations arising from the suboptimal properties of the generic molecular fluorescent dyes commonly used for such applications is described. In developing THQ-Rosol, we prepared a progressive series of torsionally restrictive N-substituted non-NIR fluorescent rosol dyes based on density functional theory (DFT) calculations, wherein we discerned high correlations amongst their calculated energetics, modeled N-C3' torsion angles, and evaluated properties.
View Article and Find Full Text PDFGlioblastoma (GBM) has a dismal prognosis. Evidence from preclinical tumor models and human trials indicates the role of GBM-initiating cells (GIC) in GBM drug resistance. Here, we propose a new treatment option with tumor enzyme-activatable, combined therapeutic and diagnostic (theranostic) nanoparticles, which caused specific toxicity against GBM tumor cells and GICs.
View Article and Find Full Text PDFTunable dual-analyte fluorescent molecular logic gates (ExoSensors) were designed for the purpose of imaging select vesicular primary-amine neurotransmitters that are released from secretory vesicles upon exocytosis. ExoSensors are based on the coumarin-3-aldehyde scaffold and rely on both neurotransmitter binding and the change in environmental pH associated with exocytosis to afford a unique turn-on fluorescence output. A pH-functionality was directly integrated into the fluorophore π-system of the scaffold, thereby allowing for an enhanced fluorescence output upon the release of labeled neurotransmitters.
View Article and Find Full Text PDFConvenient methods for the direct visualization of neurotransmitter trafficking would bolster investigations into the development of neurodegenerative diseases. Here, tunable fluorescent molecular logic gates with applications to neuronal imaging have been developed. The three-input AND molecular logic gates are based on the coumarin-3-aldehyde scaffold and designed to give a turn-on fluorescence response upon the corelease of glutamate and zinc from secretory vesicles via exocytosis.
View Article and Find Full Text PDFA fluorescent chemosensor for the detection of phosphoserine is reported. The ditopic sensor features a phosphate-coordinating zinc(II)-dipicolylamine (Zn(2+)-DPA) unit tethered to an amine-binding coumarin aldehyde fluorophore. With phosphoserine, the sensor demonstrates a 30-fold fluorescence enhancement under buffered aqueous conditions.
View Article and Find Full Text PDFA dual-analyte fluorescent chemosensor (ExoSensor 517) for the direct visualization of neurotransmitters released upon exocytosis is presented. The sensor exploits the high concentration of neurotransmitters (e.g.
View Article and Find Full Text PDFKynurenine, a metabolite of tryptophan, is known to contribute to cancer progression when overproduced. A method for facile fluorescent sensing of kynurenine using sensor 1 has been developed. When bound at low pH, sensor 1 undergoes a very large bathochromic shift because kynurenine extends the conjugation of the fluorophore.
View Article and Find Full Text PDF