Objective: Otitis externa is a common condition managed by junior doctor-led ENT clinics in secondary/tertiary care, but no national guidelines exist for presentations in these settings. The aim of this study was to implement a treatment algorithm to support junior doctors and improve otitis externa management.
Methods: Baseline data were retrospectively collected for 16 weeks.
Background/aims: Cervical stimulation induces a circadian rhythm of prolactin secretion and antiphase dopamine release. The suprachiasmatic nucleus (SCN) controls this rhythm, and we propose that it does so through clock gene expression within the SCN.
Methods: To test this hypothesis, serial blood samples were taken from animals injected with an antisense deoxyoligonucleotide cocktail for clock genes (generated against the 5' transcription start site and 3' cap site of per1, per2, and clock mRNA) or with a random-sequence deoxyoligonucleotide in the SCN.
In female rats, estradiol (E(2)) and suckling induce prolactin (PRL) secretion. This involves inhibition of hypothalamic dopaminergic tone and stimulation by a PRL-releasing hormone, possibly oxytocin (OT). Infusing an OT antagonist (OTA) i.
View Article and Find Full Text PDFIn female rats, estradiol is responsible for a circadian secretory prolactin (PRL) pattern which requires an intact suprachiasmatic nucleus (SCN). SCN outputs involved in this secretory profile remain elusive. Because oxytocin has been proposed to stimulate PRL secretion, we investigated whether the projections of vasoactive intestinal polypeptide (VIP) from the SCN to neurons producing oxytocin in the paraventricular and periventricular nuclei (PVN and PeVN, respectively) are responsible for timing PRL surges induced by estradiol (E(2)).
View Article and Find Full Text PDFThe nature of the circadian signal from the suprachiasmatic nucleus (SCN) required for prolactin (PRL) surges is unknown. Because the SCN neuronal circadian rhythm is determined by a feedback loop of Period (Per) 1, Per2, and circadian locomotor output cycles kaput (Clock) gene expressions, we investigated the effect of SCN rhythmicity on PRL surges by disrupting this loop. Because lesion of the locus coeruleus (LC) abolishes PRL surges and these neurons receive SCN projections, we investigated the role of SCN rhythmicity in the LC neuronal circadian rhythm as a possible component of the circadian mechanism regulating PRL surges.
View Article and Find Full Text PDF