Motoric disturbances in Parkinson's disease (PD) derive from the loss of dopaminergic neurons in the substantia nigra. Intestinal dysfunctions often appear long before manifestation of neuronal symptoms, suggesting a strong correlation between gut and brain in PD. Oxidative stress is a key player in neurodegeneration causing neuronal cell death.
View Article and Find Full Text PDFThe adhesion of cells on organic electrochemical transistors (OECT) is investigated down to a single cell resolution using an impedimetric readout method of the transistors. For this purpose a fabrication protocol for micro-sized OECTs based on Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) was developed. OECTs with gate dimensions of 20 μm × 20 μm with cut-off frequencies up to 10 kHz at -3 dB were fabricated.
View Article and Find Full Text PDFReduced graphene oxide (rGO) thin films can be exploited as highly sensitive transducer layers and integrated in interdigital micro-electrode systems for biosensing processes. The distinctive bipolar characterisitics of rGO thin films can be modulated by a very low external electric field due to the electrostatic charges of biomolecules. These charges lead to a fast response in the readout signals of rGO based ion sensitive field-effect transistors (ISFETs).
View Article and Find Full Text PDFElectrophysiological biosensors embedded in planar devices represent a state of the art approach to measure and evaluate the electrical activity of biological systems. This measurement method allows for the testing of drugs and their influences on cells or tissues, cytotoxicity, as well as the direct implementation into biological systems in vivo for signal transduction. Multi-electrode arrays (MEAs) with metal or metal-like electrodes on glass substrates are one of the most common, well-established platforms for this purpose.
View Article and Find Full Text PDFCytotoxic T lymphocytes (CTLs) play an important role in the immune system by recognizing and eliminating pathogen-infected and tumorigenic cells. In order to achieve their function, T cells have to migrate throughout the whole body and identify the respective targets. In conventional immunology studies, interactions between CTLs and targets are usually investigated using tedious and time-consuming immunofluorescence imaging.
View Article and Find Full Text PDFThe microelectrode array (MEA) can be used to study extracellular field potentials (exFPs) of electrogenic cells. Microcontact printing, which must be repeated after each experiment, is often used to promote accurate positioning of cells onto electrodes. The present study used MEAs with evenly spaced detection electrodes aligning along permanent SU-8 topographical guidance channels to measure propagation direction and speed.
View Article and Find Full Text PDFThe microelectrode array was used to study the pharmacologic preconditioning effect of adenosine triphosphate-sensitive channel activation using potassium channel openers (KCOs) on rat cardiomyocytes over 90 minutes of ischemia. Cell viability and electrophysiological changes between KCOs pretreated and untreated cardiomyocytes were compared. Ischemia caused significant increases in beat frequency, extracellular field potential amplitude, and propagation velocity of spontaneously beating untreated cardiomyocytes.
View Article and Find Full Text PDFTo determine whether changes in membrane potential affect the extent of mast cell degranulation, compound 48/80 was added to rat peritoneal mast cell suspensions in the absence or presence of potassium channel openers (KCOs). Changes were compared between the field potential (FP) and the amount of histamine released. The results demonstrated that (i) the onset and duration of FP, which reflects the hyperpolarizing nature of the response, increased as the concentration of compound 48/80 increased; (ii) both FP and the amount of histamine released increased as the concentration of compound 48/80 increased; (iii) although both KCOs (SDZ PCO400, a benzopyran derivative, and P1060, a cyanoguanidine derivative) potentiated compound 48/80-induced increases in FP and histamine release, without compound 48/80, they had no effect on either parameter; (iv) both glibenclamide and charybdotoxin significantly attenuated the compound 48/80-induced increase in FP; and (v) glibenclamide was able to attenuate the KCO-induced potentiation of FP.
View Article and Find Full Text PDFIntroduction: Simultaneous recording of electrical potentials from multiple cells may be useful for physiological and pharmacological research. The present study aimed to establish an in vitro cardiac hypoxia experimental platform on the microelectrode array (MEA).
Methods: Embryonic rat cardiac myocytes were cultured on the MEAs.
We performed this study to demonstrate the applicability of the microelectrode array (MEA) to study electrophysiological changes of rat peritoneal mast cells in the presence of compound 48/80 under normal, Ca(2+)-free, Ca(2+)-free with EDTA, and Cl(-)-free conditions. The use of high extracellular K(+) (KCl, 150 mM), charybdotoxin (ChTX, 100 nM), and Cl(-)-free containing ChTX buffers verified that the hyperpolarizing signal was due to the activation of mainly K(+) and, to a lesser extent, Cl(-) channels. Compound 48/80 concentration-dependently shortened the latent periods (the onset of response) and increased both the spatial (the K(+) and Cl(-) hyperpolarizing field potentials, HFP) and temporal measurements (the duration of response).
View Article and Find Full Text PDF