Publications by authors named "Jessica K Hartman"

Liver responses are the most common endpoints used as the basis for setting exposure standards. Liver hepatocytes play a vital role in biotransformation of xenobiotics, but non-parenchymal cells (NPCs) in the liver are also involved in certain liver responses. Development of in vitro systems that more faithfully capture liver responses to reduce reliance on animals is a major focus of New Approach Methodology (NAMs).

View Article and Find Full Text PDF

There is increasing interest in using modern 'omics technologies, such as whole transcriptome sequencing, to inform decisions about human health safety and chemical toxicity hazard. High throughput methodologies using in vitro assays offer a path forward in reducing or eliminating animal testing. However, many aspects of these technologies need assessment before they will gain the trust of regulators and the public as viable alternative test methods for human health and safety.

View Article and Find Full Text PDF

In vitro chemical risk assessment using human cells is emerging as an alternative to in vivo animal testing with reduced costs, fewer animal welfare concerns, and the possibility of greater human health relevance. In vitro inhalation toxicity testing of volatile compounds poses particular challenges. Here we report our efforts to establish a testing protocol in our own lab using the EpiAirway bronchial epithelium cell culture model and the Vitrocell 12/12 system for air-liquid interface (ALI) exposures.

View Article and Find Full Text PDF

Chemical risk assessment relies on toxicity tests that require significant numbers of animals, time and costs. For the >30,000 chemicals in commerce, the current scale of animal testing is insufficient to address chemical safety concerns as regulatory and product stewardship considerations evolve to require more comprehensive understanding of potential biological effects, conditions of use, and associated exposures. We demonstrate the use of a multi-level new approach methodology (NAMs) strategy for hazard- and risk-based prioritization to reduce animal testing.

View Article and Find Full Text PDF

In the past 10 years, the public, private, and non-profit sectors have found agreement that hazard identification and risk assessment should capitalize on the explosion of knowledge in the biological sciences, moving away from in life animal testing toward more human-relevant in vitro and in silico methods, collectively referred to as new approach methodologies (NAMs). The goals for implementation of NAMs are to efficiently identify possible chemical hazards and to gather dose-response data to inform more human-relevant safety assessment. While work proceeds to develop NAMs, there has been less emphasis on creating decision criteria or showing how risk context should guide selection and use of NAMs.

View Article and Find Full Text PDF

Rising obesity rates worldwide have socio-economic ramifications. While genetics, diet, and lack of exercise are major contributors to obesity, environmental factors may enhance susceptibility through disruption of hormone homeostasis and metabolic processes. The obesogen hypothesis contends that chemical exposure early in development may enhance adipocyte differentiation, thereby increasing the number of adipocytes and predisposing for obesity and metabolic disease.

View Article and Find Full Text PDF

An evolving regulatory, scientific, and legislative landscape is driving a fundamental change in how chemical safety decisions are made. As we move to implement changes, regulatory agencies and industry are beginning to adopt tiered approaches, which leverage high-throughput screening technologies for prioritization and read across, followed by interrogation of "hit chemicals" with more rigorous dose-response assessment either in fit-for-purpose human cell-based assays or with traditional in vivo tests. However, to date, suitable in vitro alternatives do not exist for the vast majority of the organ toxicities that form the basis of current regulatory decisions.

View Article and Find Full Text PDF

Defining the molecular networks that drive breast cancer has led to therapeutic interventions and improved patient survival. However, the aggressive triple-negative breast cancer subtype (TNBC) remains recalcitrant to targeted therapies because its molecular etiology is poorly defined. In this study, we used a forward genetic screen to discover an oncogenic network driving human TNBC.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontjemcnapt63tp8d5rtsevu8e3aokdmkg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once