The bearded weevil, Rhinostomus barbirostris (Coleoptera: Curculionidae: Dryophthorinae), attacks coconut trees, oil palms and other species of Arecaceae. Besides direct damage, R. barbirostris may be a vector of diseases in coconut and oil palms, such as stem bleeding (resinosis) and red ring disease.
View Article and Find Full Text PDFTranscranial focused ultrasound (FUS) and microbubble contrast agent, applied at parameters known to transiently increase blood-brain barrier permeability, were tested for the potential to stimulate hippocampal neurogenesis. In adult mice, FUS treatment significantly increased the number of proliferating cells and newborn neurons in the dentate gyrus of the dorsal hippocampus. This provides evidence that FUS with microbubbles can stimulate hippocampal neurogenesis, a process involved in learning and memory and affected in neurological disorders, such as Alzheimer's disease.
View Article and Find Full Text PDFNoninvasive, targeted drug delivery to the brain can be achieved using transcranial focused ultrasound (FUS), which transiently increases the permeability of the blood-brain barrier (BBB) for localized delivery of therapeutics from the blood to the brain. Previously, we have demonstrated that FUS can deliver intravenously-administered antibodies to the brain of a mouse model of Alzheimer's disease (AD) and rapidly reduce plaques composed of amyloid-β peptides (Aβ). Here, we investigated two potential effects of transcranial FUS itself that could contribute to a reduction of plaque pathology, namely the delivery of endogenous antibodies to the brain and the activation of glial cells.
View Article and Find Full Text PDFNoninvasive drug delivery to the brain remains a major challenge for the treatment of neurological disorders. Transcranial focused ultrasound combined with lipid-coated gas microspheres injected into the bloodstream has been shown to increase the permeability of the blood-brain barrier locally and transiently. Coupled with magnetic resonance imaging, ultrasound can be guided to allow therapeutics administered in the blood to reach brain regions of interest.
View Article and Find Full Text PDFAccumulation of amyloid-β peptides (Aβ) and cholinergic degeneration are hallmarks of Alzheimer's disease (AD). In a triple transgenic mouse model of AD (3xTg-AD), soluble Aβ42 levels were detected in the septum by 2 months of age, reaching their highest levels at 3-6 months and decreasing at 12 months. Deficits in the number of septal cholinergic neurons and the length of hippocampal cholinergic axons were observed starting at 4 months in 3xTg-AD mice.
View Article and Find Full Text PDFStem cell therapy is a promising strategy to treat neurodegenerative diseases, traumatic brain injury, and stroke. For stem cells to progress towards clinical use, the risks associated with invasive intracranial surgery used to deliver the cells to the brain, needs to be reduced. Here, we show that MRI-guided focused ultrasound (MRIgFUS) is a novel method for non-invasive delivery of stem cells from the blood to the brain by opening the blood brain barrier (BBB) in specific brain regions.
View Article and Find Full Text PDFImmunotherapy for Alzheimer's disease (AD) relies on antibodies directed against toxic amyloid-beta peptide (Abeta), which circulate in the bloodstream and remove Abeta from the brain. In mouse models of AD, the administration of anti-Abeta antibodies directly into the brain, in comparison to the bloodstream, was shown to be more efficient at reducing Abeta plaque pathology. Therefore, delivering anti-Abeta antibodies to the brain of AD patients may also improve treatment efficiency.
View Article and Find Full Text PDF