Early identification and treatment of inherited metabolic diseases (IMDs) are essential to prevent and minimize intellectual disability (ID) and epilepsy. The oldest form of treatment, nutritional modulation, has proved beneficial for many IMDs. These conditions represent a promising model for P4 medicine - predictive, preventive, personalized, and participatory - specifically through the interpretation of individual genetic, pathophysiological, and clinical characteristics.
View Article and Find Full Text PDFAlthough inborn errors of metabolism do not represent the most common cause of seizures, their early identification is of utmost importance, since many will require therapeutic measures beyond that of common anti-epileptic drugs, either in order to control seizures, or to decrease the risk of neurodegeneration. We translate the currently-known literature on metabolic etiologies of epilepsy (268 inborn errors of metabolism belonging to 21 categories, with 74 treatable errors), into a 2-tiered diagnostic algorithm, with the first-tier comprising accessible, affordable, and less invasive screening tests in urine and blood, with the potential to identify the majority of treatable conditions, while the second-tier tests are ordered based on individual clinical signs and symptoms. This resource aims to support the pediatrician, neurologist, biochemical, and clinical geneticists in early identification of treatable inborn errors of metabolism in a child with seizures, allowing for timely initiation of targeted therapy with the potential to improve outcomes.
View Article and Find Full Text PDFObjective: The clinical diagnosis of genetic disorders is undergoing transformation, driven by whole exome sequencing and whole genome sequencing (WES/WGS). However, such nucleotide-level resolution technologies create an interpretive challenge. Prior literature suggests that clinicians may employ characteristic cognitive processes during WES/WGS investigations to identify disruptions in genes causal for the observed disease.
View Article and Find Full Text PDFOver the last decades, a growing spectrum of monogenic disorders of human magnesium homeostasis has been clinically characterized, and genetic studies in affected individuals have identified important molecular components of cellular and epithelial magnesium transport. Here, we describe three infants who are from non-consanguineous families and who presented with a disease phenotype consisting of generalized seizures in infancy, severe hypomagnesemia, and renal magnesium wasting. Seizures persisted despite magnesium supplementation and were associated with significant intellectual disability.
View Article and Find Full Text PDFPhenomics is the comprehensive study of phenotypes at every level of biology: from metabolites to organisms. With high throughput technologies increasing the scope of biological discoveries, the field of phenomics has been developing rapid and precise methods to collect, catalog, and analyze phenotypes. Such methods have allowed phenotypic data to be widely used in medical applications, from assisting clinical diagnoses to prioritizing genomic diagnoses.
View Article and Find Full Text PDFPurposeRecognizing individuals with inherited diseases can be difficult because signs and symptoms often overlap those of common medical conditions. Focusing on inborn errors of metabolism (IEMs), we present a method that brings the knowledge of highly specialized experts to professionals involved in early diagnoses. We introduce IEMbase, an online expert-curated IEM knowledge base combined with a prototype diagnosis support (mini-expert) system.
View Article and Find Full Text PDFDistal hereditary motor neuropathies represent a group of rare genetic disorders characterized by progressive distal motor weakness without sensory loss. Their genetic heterogeneity is high and thus eligible for diagnostic whole exome sequencing. The authors report successful application of whole exome sequencing in diagnosing a second consanguineous family with distal hereditary motor neuropathy due to a homozygous c.
View Article and Find Full Text PDFBackground: Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level.
View Article and Find Full Text PDFBackground: Dramatic improvements in DNA-sequencing technologies and computational analyses have led to wide use of whole exome sequencing (WES) to identify the genetic basis of Mendelian disorders. More than 180 novel rare-disease-causing genes with Mendelian inheritance patterns have been discovered through sequencing the exomes of just a few unrelated individuals or family members. As rare/novel genetic variants continue to be uncovered, there is a major challenge in distinguishing true pathogenic variants from rare benign mutations.
View Article and Find Full Text PDF