Cardiovirus Leader proteins (LX) inhibit cellular nucleocytoplasmic trafficking by directing host kinases to phosphorylate Phe/Gly-containing nuclear pore proteins (Nups). Resolution of the Mengovirus LM structure bound to Ran GTPase, suggested this complex would further recruit specific exportins (karyopherins), which in turn mediate kinase selection. Pull-down experiments and recombinant complex reconstitution now confirm that Crm1 and CAS exportins form stable dimeric complexes with encephalomyocarditis virus LE, and also larger complexes with LE:Ran.
View Article and Find Full Text PDFCardiovirus infections inhibit nucleocytoplasmic trafficking by Leader protein-induced phosphorylation of Phe/Gly-containing nucleoporins (Nups). Recombinant Leader from encephalomyocarditis virus, Theiler׳s murine encephalomyelitis virus and Saffold virus target the same subset of Nups, including Nup62 and Nup98, but not Nup50. Reporter cell lines with fluorescence mCherry markers for M9, RS and classical SV40 import pathways, as well as the Crm1-mediated export pathway, all responded to transfection with the full panel of Leader proteins, showing consequent cessation of path-specific active import/export.
View Article and Find Full Text PDFCardiovirus Leader (L) proteins induce potent antihost inhibition of active cellular nucleocytoplasmic trafficking by triggering aberrant hyperphosphorylation of nuclear pore proteins (Nup). To achieve this, L binds protein RanGTPase (Ran), a key trafficking regulator, and diverts it into tertiary or quaternary complexes with required kinases. The activity of L is regulated by two phosphorylation events not required for Ran binding.
View Article and Find Full Text PDFEncephalomyocarditis virus and Theilovirus are species in the Cardiovirus genus of the Picornaviridae family. For all cardioviruses, the viral polyprotein is initiated with a short Leader (L) protein unique to this genus. The nuclear magnetic resonance (NMR) structure of LE from encephalomyocarditis virus (EMCV) has been determined.
View Article and Find Full Text PDFPost-transcriptional gene silencing is commonly observed in polyploid species and often poses a major limitation to plant improvement via biotechnology. Five plant viral suppressors of RNA silencing were evaluated for their ability to counteract gene silencing and enhance the expression of the Enhanced Yellow Fluorescent Protein (EYFP) or the β-glucuronidase (GUS) reporter gene in sugarcane, a major sugar and biomass producing polyploid. Functionality of these suppressors was first verified in Nicotiana benthamiana and onion epidermal cells, and later tested by transient expression in sugarcane young leaf segments and protoplasts.
View Article and Find Full Text PDFThe RNAi model predicts that during antiviral defense a RNA-induced silencing complex (RISC) is programmed with viral short-interfering RNAs (siRNAs) to target the cognate viral RNA for degradation. We show that infection of Nicotiana benthamiana with Tobacco rattle virus (TRV) activates an antiviral nuclease that specifically cleaves TRV RNA in vitro. In agreement with known RISC properties, the nuclease activity was inhibited by NaCl and EDTA and stimulated by divalent metal cations; a novel property was its preferential targeting of elongated RNA molecules.
View Article and Find Full Text PDFTomato bushy stunt virus (TBSV) and other tombusviruses encode a p19 protein (P19), which is a suppressor of RNAi. Wild-type TBSV or p19-defective mutants initially show a similar infection course in Nicotiana benthamiana, but the absence of an active P19 results in viral RNA degradation followed by recovery from infection. P19 homodimers sequester 21-nt virus-derived duplex siRNAs, and it is thought that this prevents the programming of an antiviral RNA-induced silencing complex to avoid viral RNA degradation.
View Article and Find Full Text PDF