Publications by authors named "Jessica J Carter"

With the appearance of the worldwide AIDS pandemic four decades ago came a number of debilitating opportunistic infections in patients immunosuppressed by the pathogenic human retrovirus HIV. Among these was a severe sight-threatening retinal disease caused by human cytomegalovirus (HCMV) that remains today a significant cause of vision loss and blindness in untreated AIDS patients without access or sufficient response to combination antiretroviral therapy. Early investigations of AIDS-related HCMV retinitis quickly characterized its hallmark clinical features and unique histopathologic presentation but did not begin to identify the precise virologic and immunologic events that allow the onset and development of this retinal disease during HIV-induced immunosuppression.

View Article and Find Full Text PDF

Pyroptosis is a caspase-dependent programmed cell death pathway that initiates and sustains inflammation through release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 following formation of gasdermin D (GSDMD)-mediated membrane pores. To determine the possible pathogenic contributions of pyroptosis toward development of full-thickness retinal necrosis during AIDS-related human cytomegalovirus retinitis, we performed a series of studies using an established model of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunosuppression (MAIDS). Initial investigations demonstrated significant transcription and translation of key pyroptosis-associated genes within the ocular compartments of MCMV-infected eyes of mice with MAIDS.

View Article and Find Full Text PDF

Interleukin-1α (IL-1α) is an alarmin involved in the recruitment of macrophages and neutrophils during tissue inflammation. IL-1α can undergo cleavage by proteases, such as calpain-1, that enhances IL-1α binding to its receptor, although proteolytic cleavage is not necessary for biological activity. Macrophages and neutrophils are involved in the retinal inflammation associated with development of AIDS-related human cytomegalovirus (HCMV) retinitis.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is an opportunistic human herpesvirus that causes a sight-threatening retinitis in immunosuppressed patients, especially those with AIDS. Using an established model of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunodeficiency (MAIDS), we have been attempting to define with greater clarity the immunologic mechanisms that contribute to the progression of AIDS-related HCMV retinitis in the unique immunosuppressive setting of HIV infection. Toward this end, we provide herein a comprehensive assessment of immune response gene expression during the onset and development of MAIDS-related MCMV retinitis employing NanoString nCounter.

View Article and Find Full Text PDF

The mechanisms that contribute to retinal tissue destruction during the onset and progression of AIDS-related human cytomegalovirus (HCMV) retinitis remain unclear. Evidence for the stimulation of multiple cell death pathways including apoptosis, necroptosis, and pyroptosis during the pathogenesis of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunosuppression (MAIDS) has been reported. Parthanatos is a caspase-independent cell death pathway mediated by rapid overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) and distinct from other cell death pathways.

View Article and Find Full Text PDF