Publications by authors named "Jessica Holien"

Kinesin-like protein 18A (KIF18A) is a member of the kinesin family of molecular motor proteins, which utilise energy from the hydrolysis of adenosine triphosphate (ATP) to regulate critical cellular processes such as chromosome movement and microtubule dynamics. KIF18A plays a vital role in controlling microtubule length, which is crucial for maintaining proper cell function and division. Notably, increased expression levels of KIF18A have been observed in various types of cancer, indicating its potential involvement in tumour progression.

View Article and Find Full Text PDF

Background: Terbinafine is widely used to treat onychomycosis caused by dermatophyte fungi. Terbinafine resistance in recent years is causing concern. Resistance has so far been associated with single-nucleotide substitutions in the DNA sequence of the enzyme squalene epoxidase (SQLE) but how this affects SQLE functionality is not understood.

View Article and Find Full Text PDF

Mucinous ovarian carcinoma (MOC) is a subtype of ovarian cancer that is distinct from all other ovarian cancer subtypes and currently has no targeted therapies. To identify novel therapeutic targets, we developed and applied a new method of differential network analysis comparing MOC to benign mucinous tumours (in the absence of a known normal tissue of origin). This method mapped the protein-protein network in MOC and then utilised structural bioinformatics to prioritise the proteins identified as upregulated in the MOC network for their likelihood of being successfully drugged.

View Article and Find Full Text PDF

The MYCN oncogene and histone deacetylases (HDACs) are key driver genes in the childhood cancer, neuroblastoma. We recently described a novel pyridobenzimidazole analogue, SE486-11, which enhanced the therapeutic effectiveness of HDAC inhibitors by increasing MYCN ubiquitination through effects on the deubiquitinase, ubiquitin-specific protease 5 (USP5). Here we describe the synthesis of a novel series of pyrimido[1,2-a]benzimidazole derivatives, and an evaluation of their cytopathic effects against non-malignant and human neuroblastoma cell lines.

View Article and Find Full Text PDF

MYCN is a major oncogenic driver for neuroblastoma tumorigenesis, yet there are no direct MYCN inhibitors. We have previously identified PA2G4 as a direct protein-binding partner of MYCN and drive neuroblastoma tumorigenesis. A small molecule known to bind PA2G4, WS6, significantly decreased tumorigenicity in neuroblastoma mice, along with the inhibition of PA2G4 and MYCN interactions.

View Article and Find Full Text PDF

is a herbal medicine used throughout Asia and this study investigated the antimelanoma potentials and molecular mechanisms of seed with emphasis on extraction to optimise bioactivity. Overall, the aqueous extract was superior, with a wider diversity and higher concentration of proteins and peptides that was more cytotoxic to the melanoma cells than other extraction solvents. The IC50 of the aqueous extract on melanoma cells were similar to treatment with current anticancer drugs, vemurafenib and cisplatin.

View Article and Find Full Text PDF

Introduction: COVID-19 pandemic has been threatening public health and economic development worldwide for over two years. Compared with the original SARS-CoV-2 strain reported in 2019, the Omicron variant (B.1.

View Article and Find Full Text PDF

Mitochondrial dynamin-related protein 1 (Drp1) is a large GTPase regulator of mitochondrial dynamics and is known to play an important role in numerous pathophysiological processes. Despite being the most widely used Drp1 inhibitor, the specificity of Mdivi-1 towards human Drp1 has not been definitively proven and there have been numerous issues reported with its use including off-target effects. In our hands Mdivi-1 showed varying binding affinities toward human Drp1, potentially impacted by compound aggregation.

View Article and Find Full Text PDF

Purpose: Patients with an underlying telomere biology disorder (TBD) have variable clinical presentations, and they can be challenging to diagnose clinically. A genomic diagnosis for patients presenting with TBD is vital for optimal treatment. Unfortunately, many variants identified during diagnostic testing are variants of uncertain significance.

View Article and Find Full Text PDF

Motivation: Over 300 000 protein-protein interaction (PPI) pairs have been identified in the human proteome and targeting these is fast becoming the next frontier in drug design. Predicting PPI sites, however, is a challenging task that traditionally requires computationally expensive and time-consuming docking simulations. A major weakness of modern protein docking algorithms is the inability to account for protein flexibility, which ultimately leads to relatively poor results.

View Article and Find Full Text PDF

Human transthyretin (hTTR) can form amyloid deposits that accumulate in nerves and organs, disrupting cellular function. Molecules such as tafamidis that bind to and stabilize the TTR tetramer can reduce such amyloid formation. Here, we studied the interaction of VCP-6 (2-((3,5-dichlorophenyl)amino)benzoic acid) with hTTR.

View Article and Find Full Text PDF

Purpose Of Review: This study is aimed at reviewing the recent progress in Drp1 inhibition as a novel approach for reducing doxorubicin-induced cardiotoxicity and for improving cancer treatment.

Recent Findings: Anthracyclines (e.g.

View Article and Find Full Text PDF

Telomere biology disorders (TBDs) are a spectrum of multisystem inherited disorders characterized by bone marrow failure, resulting from mutations in the genes encoding telomerase or other proteins involved in maintaining telomere length and integrity. Pathogenicity of variants in these genes can be hard to evaluate, because TBD mutations show highly variable penetrance and genetic anticipation related to inheritance of shorter telomeres with each generation. Thus, detailed functional analysis of newly identified variants is often essential.

View Article and Find Full Text PDF

The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer.

View Article and Find Full Text PDF

Dihydrodipicolinate synthase (DHDPS), responsible for the first committed step of the diaminopimelate pathway for lysine biosynthesis, has become an attractive target for the development of new antibacterial and herbicidal agents. Herein, we report the discovery and exploration of the first inhibitors of E. coli DHDPS which have been identified from screening lead and are not based on substrates from the lysine biosynthesis pathway.

View Article and Find Full Text PDF

Herein, we identified a potent lead compound RRA2, within a series of 54 derivatives of 1,2,4-triazolethiols (exhibit good potency as an anti-mycobacterial agents) against intracellular Mycobacterium tuberculosis (Mtb). Compound RRA2 showed significant mycobactericidal activity against active stage Mycobacterium bovis BCG and Mtb with minimum inhibitory concentration (MIC) values of 2.3 and 2.

View Article and Find Full Text PDF

Despite the important roles played by protein-protein interactions (PPIs) in disease, they have been long considered as 'undruggable'. However, recent advances have suggested that PPIs are druggable but may not follow conventional rules of 'drug ability'. Here we explore which physicochemical parameters are essential for a PPI modulator to be a clinical drug by analysing the physicochemical properties of small-molecule PPI modulators in the market, in clinical trials, and published.

View Article and Find Full Text PDF

COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), whilst commonly characterised as a respiratory disease, is reported to have extrapulmonary manifestations in multiple organs. Extrapulmonary involvement in COVID-19 includes autoimmune-like diseases such as Guillain-Barré syndrome and Kawasaki disease, as well as the presence of various autoantibodies including those associated with autoimmune diseases such a systemic lupus erythematosus (e.g.

View Article and Find Full Text PDF

The monocyte β-integrin Mac-1 is crucial for leukocyte-endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the α I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry.

View Article and Find Full Text PDF

Histone deacetylase (HDAC) inhibitors are effective in MYCN-driven cancers, because of a unique need for HDAC recruitment by the MYCN oncogenic signal. However, HDAC inhibitors are much more effective in combination with other anti-cancer agents. To identify novel compounds which act synergistically with HDAC inhibitor, such as suberanoyl hydroxamic acid (SAHA), we performed a cell-based, high-throughput drug screen of 10,560 small molecule compounds from a drug-like diversity library and identified a small molecule compound (SE486-11) which synergistically enhanced the cytotoxic effects of SAHA.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores the nicotinic acetylcholine receptor (nAChR) gene family in D. melanogaster to identify specific receptor subunits that insects use to respond to various insecticides, including neonicotinoids, spinosyns, and sulfoximines.
  • Using CRISPR/Cas9 gene editing, the researchers created mutants for several nAChR subunit genes and discovered that the spinosad insecticide specifically targets the Dα6 subunit, while neonicotinoids target multiple receptor subtypes.
  • The results indicate a significant overlap in resistance mechanisms among different insect species, with certain mutations in subunit genes strongly correlating with
View Article and Find Full Text PDF

Aims: Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission.

View Article and Find Full Text PDF

The role of proliferation-associated protein 2G4 (PA2G4), alternatively known as ErbB3-binding protein 1 (EBP1), in cancer has become apparent over the past 20 years. PA2G4 expression levels are correlated with prognosis in a range of human cancers, including neuroblastoma, cervical, brain, breast, prostate, pancreatic, hepatocellular, and other tumors. There are two PA2G4 isoforms, PA2G4-p42 and PA2G4-p48, and although both isoforms of PA2G4 regulate cellular growth and differentiation, these isoforms often have opposing roles depending on the context.

View Article and Find Full Text PDF

Telomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive.

View Article and Find Full Text PDF