Publications by authors named "Jessica Higgins"

An unusual case of infectious bursal disease (IBD) was observed in eight-week-old commercial caged pullets. This flock (House 1) exhibited a one-day spike in mortality. On gross necropsy examination, enlarged, diffusely haemorrhagic bursas were observed.

View Article and Find Full Text PDF

Flight is a central determinant of fitness in butterflies and other insects, but it is restricted to a limited range of body temperatures. To achieve these body temperatures, butterflies use a combination of morphological, behavioural and physiological mechanisms. Here, we used common garden (without direct solar radiation) and reciprocal transplant (full solar radiation) experiments in the field to determine the thermal sensitivity of flight initiation for two species of Colias butterflies along an elevation gradient in the southwestern Rocky Mountains.

View Article and Find Full Text PDF

Insects with complex life cycles vary in size, mobility, and thermal ecology across life stages. We examine how differences in the capacity for thermoregulatory behavior influence geographic differences in physiological heat tolerance among egg and adult Colias butterflies. Colias adults exhibit differences in morphology (wing melanin and thoracic setal length) along spatial gradients, whereas eggs are morphologically indistinguishable.

View Article and Find Full Text PDF

Most terrestrial ectotherms experience diurnal and seasonal variation in temperature. Because thermal performance curves are non-linear, mean performance can differ in fluctuating and constant thermal environments. However, time-dependent effects--effects of the order and duration of exposure to temperature--can also influence mean performance.

View Article and Find Full Text PDF

The Th(iv) mixed-sandwich halide complexes Th(COT(TIPS2))Cp*X (where COT(TIPS2) = 1,4-{Si(i)Pr(3)}(2)C(8)H(6), X = Cl, I) have been synthesised, and structurally characterised. When Th(COT(TIPS2))Cp*I is reduced in situ in the presence of CO(2), a mixture of dimeric carboxylate and oxalate complexes {Th(COT(TIPS2))Cp*}(2)(μ-κ(1):κ(2)-CO(3)) and {Th(COT(TIPS2))Cp*}(2)(μ-κ(2):κ(2)-C(2)O(4)) are formed, possibly via a transient Th(iii) species. Th(COT(TIPS2))Cp*Cl is readily alkylated to yield the benzyl complex Th(COT(TIPS2))Cp*CH(2)Ph, which reacts with CO(2) to form a carboxylate and with H(2) to form a hydride; the latter inserts CO(2), giving the bridging formate complex {Th(COT(TIPS2))Cp*(μ-κ(1):κ(1)-O(2)CH)}(2).

View Article and Find Full Text PDF

Local adaptation of populations could preclude or slow range expansions in response to changing climate, particularly when dispersal is limited. To investigate the differential responses of populations to changing climatic conditions, we exposed poleward peripheral and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared their whole-transcriptome expression. We found evidence of simple population differentiation in both species, and in the species with previously identified population structure and phenotypic local adaptation, we found several hundred genes that responded in a synchronized and localized fashion.

View Article and Find Full Text PDF

Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses to climate.

View Article and Find Full Text PDF