Brucellosis is a disease caused by the bacterium Brucella and typically transmitted through contact with infected ruminants. It is one of the most common chronic zoonotic diseases and of particular interest to public health agencies. Despite its well-known transmission history and characteristic symptoms, we lack a more complete understanding of the evolutionary history of its best-known species-Brucella melitensis.
View Article and Find Full Text PDFObjective: To investigate variation in ancient DNA recovery of Brucella melitensis, the causative agent of brucellosis, from multiple tissues belonging to one individual MATERIALS: 14 samples were analyzed from the mummified remains of the Blessed Sante, a 14 century Franciscan friar from central Italy, with macroscopic diagnosis of probable brucellosis.
Methods: Shotgun sequencing data from was examined to determine the presence of Brucella DNA.
Results: Three of the 14 samples contained authentic ancient DNA, identified as belonging to B.
Ancient DNA and RNA are valuable data sources for a wide range of disciplines. Within the field of ancient metagenomics, the number of published genetic datasets has risen dramatically in recent years, and tracking this data for reuse is particularly important for large-scale ecological and evolutionary studies of individual taxa and communities of both microbes and eukaryotes. AncientMetagenomeDir (archived at https://doi.
View Article and Find Full Text PDFTardigrades are microscopic organisms renowned for their ability to survive extreme environmental conditions. Tardigrade extreme-tolerance research has centered on the ability to withstand desiccation, low and high temperatures, and high hydrostatic pressure and radiation levels. Tardigrade tolerance to hypergravity, however, has yet to be described.
View Article and Find Full Text PDFBackground: Currently, there is very limited knowledge about the genes involved in normal pigmentation variation in East Asian populations. We carried out a genome-wide scan of signatures of positive selection using the 1000 Genomes Phase I dataset, in order to identify pigmentation genes showing putative signatures of selective sweeps in East Asia. We applied a broad range of methods to detect signatures of selection including: 1) Tests designed to identify deviations of the Site Frequency Spectrum (SFS) from neutral expectations (Tajima's D, Fay and Wu's H and Fu and Li's D* and F*), 2) Tests focused on the identification of high-frequency haplotypes with extended linkage disequilibrium (iHS and Rsb) and 3) Tests based on genetic differentiation between populations (LSBL).
View Article and Find Full Text PDF