Background: Gestational diabetes is associated with increased risk of type 2 diabetes mellitus and cardiovascular disease for the mother in the decade after delivery. However, the molecular mechanisms that drive these effects are unknown. Recent studies in humans have shown that lipid metabolism is dysregulated before diagnosis of and during gestational diabetes and we have shown previously that lipid metabolism is also altered in obese female mice before, during and after pregnancy.
View Article and Find Full Text PDFObjective: Obesity during pregnancy is associated with an elevated risk of cardiovascular disease in the offspring. With increased numbers of women entering pregnancy overweight or obese, there is a requirement for targeted interventions to reduce disease risk in future generations. Using an established murine model of maternal obesity during pregnancy, we investigated if a treadmill exercise intervention in the mother could improve offspring cardiac health and explored potential underlying mechanisms.
View Article and Find Full Text PDFAims: Obesity during pregnancy increases risk of cardiovascular disease (CVD) in the offspring and individuals exposed to over-nutrition during fetal life are likely to be exposed to a calorie-rich environment postnatally. Here, we established the consequences of combined exposure to a maternal and post-weaning obesogenic diet on offspring cardiac structure and function using an established mouse model of maternal diet-induced obesity.
Methods And Results: The impact of the maternal and postnatal environment on the offspring metabolic profile, arterial blood pressure, cardiac structure, and function was assessed in 8-week-old C57BL/6 male mice.
Background: To study the pathogenesis of diabetic cardiomyopathy, reliable animal models of type 2 diabetes are required. Physiologically relevant rodent models are needed, which not only replicate the human pathology but also mimic the disease process. Here we characterised cardiac metabolic abnormalities, and investigated the optimal experimental approach for inducing disease, in a new model of type 2 diabetes.
View Article and Find Full Text PDF