Geometric morphometrics is a powerful tool for studying fish body shape; however, body posture can be a hindrance to these analyses. Here I introduce new R language tools for correcting multiple types of bending of 3D data based on the TPS suite (geometric morphometric software) "unbend specimens" methodology. In a sample dataset of darters, these R tools adequately accounted for posture artifacts otherwise evident across multiple principal component axes.
View Article and Find Full Text PDFAnat Rec (Hoboken)
February 2023
Allometry, the relationship between anatomical proportions and body size, may either limit or facilitate the diversification of morphology. We examined the impact of allometry in darter fish morphology, which displays a variety of trophic morphologies. This study aimed to address (a) whether there was significant variation in darter head allometry, (b) if allometry contributed to head shape diversity in adults, and (c) if darters show head shape modularity associated with allometry.
View Article and Find Full Text PDFDespite the widespread notion that animal-mediated seed dispersal led to the evolution of fruit traits that attract mutualistic frugivores, the dispersal syndrome hypothesis remains controversial, particularly for complex traits such as fruit scent. Here, we test this hypothesis in a community of mutualistic, ecologically important neotropical bats ( spp.) and plants ( spp.
View Article and Find Full Text PDFNovel morphological traits pose interesting evolutionary paradoxes when they become widespread in a lineage while being deleterious in others. Cleft palate is a rare congenital condition in mammals in which the incisor-bearing premaxilla bones of the upper jaw develop abnormally. However, ∼50% of bat species have natural, non-pathological cleft palates.
View Article and Find Full Text PDFNeomorphic, membrane-associated skeletal rods are found in disparate vertebrate lineages, but their evolution is poorly understood. Here we show that one of these elements-the calcar of bats (Chiroptera)-is a skeletal novelty that has anatomically diversified. Comparisons of evolutionary models of calcar length and corresponding disparity-through-time analyses indicate that the calcar diversified early in the evolutionary history of Chiroptera, as bats phylogenetically diversified after evolving the capacity for flight.
View Article and Find Full Text PDFModern computational and imaging methods are revolutionizing the fields of comparative morphology, biomechanics, and ecomorphology. In particular, imaging tools such as X-ray micro computed tomography (µCT) and diffusible iodine-based contrast enhanced CT allow observing and measuring small and/or otherwise inaccessible anatomical structures, and creating highly accurate three-dimensional (3D) renditions that can be used in biomechanical modeling and tests of functional or evolutionary hypotheses. But, do the larger datasets generated through 3D digitization always confer greater power to uncover functional or evolutionary patterns, when compared with more traditional methodologies? And, if so, why? Here, we contrast the advantages and challenges of using data generated via (3D) CT methods versus more traditional (2D) approaches in the study of skull macroevolution and feeding functional morphology in bats.
View Article and Find Full Text PDFMorphological diversity may arise rapidly as a result of adaptation to novel ecological opportunities, but early bursts of trait evolution are rarely observed. Rather, models of discrete shifts between adaptive zones may better explain macroevolutionary dynamics across radiations. To investigate which of these processes underlie exceptional levels of morphological diversity during ecological diversification, we use modern phylogenetic tools and 3D geometric morphometric datasets to examine adaptive zone shifts in bat skull shape.
View Article and Find Full Text PDFAnimals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose.
View Article and Find Full Text PDFPrimates represent one of the most species rich, wide ranging, and ecologically diverse clades of mammals. What major macroevolutionary factors have driven their diversification and contributed to the modern distribution of primate species remains widely debated. We employed phylogenetic comparative methods to examine the role of clade age and evolutionary rate heterogeneity in the modern distribution of species diversity of Primates.
View Article and Find Full Text PDFAdaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by 'ecological opportunity' are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification.
View Article and Find Full Text PDFBackground: Simpson envisaged a conceptual model of adaptive radiation in which lineages diversify into "adaptive zones" within a macroevolutionary adaptive landscape. However, only a handful of studies have empirically investigated this adaptive landscape and its consequences for our interpretation of the underlying mechanisms of phenotypic evolution. In fish radiations the evolution of locomotor phenotypes may represent an important dimension of ecomorphological diversification given the implications of locomotion for feeding and habitat use.
View Article and Find Full Text PDFDiversity and disparity are unequally distributed both phylogenetically and geographically. This uneven distribution may be owing to differences in diversification rates between clades resulting from processes such as adaptive radiation. We examined the rate and distribution of evolution in feeding biomechanics in the extremely diverse and continentally distributed South American geophagine cichlids.
View Article and Find Full Text PDFMost contemporary studies of adaptive radiation focus on relatively recent and geographically restricted clades. It is less clear whether diversification of ancient clades spanning entire continents is consistent with adaptive radiation. We used novel fossil calibrations to generate a chronogram of Neotropical cichlid fishes and to test whether patterns of lineage and morphological diversification are congruent with hypothesized adaptive radiations in South and Central America.
View Article and Find Full Text PDFMissing data are an unavoidable problem in biological data sets and the performance of missing data deletion and estimation techniques in morphometric data sets is poorly understood. Here, a novel method is used to measure the introduced error of multiple techniques on a representative sample. A large sample of extant crocodilian skulls was measured and analyzed with principal component analysis (PCA).
View Article and Find Full Text PDF