Publications by authors named "Jessica Funnell"

Multiple therapies have been studied to ameliorate the neuroinhibitory cues present after traumatic injury to the central nervous system. Two previous in vitro studies have demonstrated the efficacy of the FDA-approved cardiovascular therapeutic, protamine (PRM), to overcome neuroinhibitory cues presented by chondroitin sulfates; however, the effect of a wide range of PRM concentrations on neuronal and glial cells has not been evaluated. In this study, we investigate the therapeutic efficacy of PRM with primary cortical neurons, hippocampal neurons, mixed glial cultures, and astrocyte cultures.

View Article and Find Full Text PDF

A spinal cord injury (SCI) compresses the spinal cord, killing neurons and glia at the injury site and resulting in prolonged inflammation and scarring that prevents regeneration. Astrocytes, the main glia in the spinal cord, become reactive following SCI and contribute to adverse outcomes. The anti-inflammatory cytokine transforming growth factor beta 3 (TGFβ3) has been shown to mitigate astrocyte reactivity; however, the effects of prolonged TGFβ3 exposure on reactive astrocyte phenotype have not yet been explored.

View Article and Find Full Text PDF

Clinical use of polymeric scaffolds for tissue engineering often suffers from their inability to promote strong cellular interactions. Functionalization with biomolecules may improve outcomes; however, current functionalization approaches using covalent chemistry or physical adsorption can lead to loss of biomolecule bioactivity. Here, we demonstrate a novel bottom-up approach for enhancing the bioactivity of poly(l-lactic acid) electrospun scaffolds though interfacial coassembly of protein payloads with silk fibroin into nanothin coatings.

View Article and Find Full Text PDF

Intracortical microelectrodes are used with brain-computer interfaces to restore lost limb function following nervous system injury. While promising, recording ability of intracortical microelectrodes diminishes over time due, in part, to neuroinflammation. As curcumin has demonstrated neuroprotection through anti-inflammatory activity, we fabricated a 300 nm-thick intracortical microelectrode coating consisting of a polyurethane copolymer of curcumin and polyethylene glycol (PEG), denoted as poly(curcumin-PEG carbamate) (PCPC).

View Article and Find Full Text PDF

Curcumin is a natural polyphenol that exhibits remarkable antioxidant and anti-inflammatory activities; however, its clinical application is limited in part by its physiological instability. Here, we report the synthesis of curcumin-derived polyesters that release curcumin upon hydrolytic degradation to improve curcumin stability and solubility in physiological conditions. Curcumin was incorporated in the polymer backbone by a one-pot condensation polymerization in the presence of sebacoyl chloride and polyethylene glycol (PEG, = 1 kDa).

View Article and Find Full Text PDF

Aligned electrospun fibers provide topographical cues and local therapeutic delivery to facilitate robust peripheral nerve regeneration. mRNA delivery enables transient expression of desired proteins that promote axonal regeneration. However, no prior work delivers mRNA from electrospun fibers for peripheral nerve regeneration applications.

View Article and Find Full Text PDF

Nerve guidance scaffolds containing anisotropic architectures provide topographical cues to direct regenerating axons through an injury site to reconnect the proximal and distal end of an injured nerve or spinal cord. Previouscultures of individual neurons revealed that fiber characteristics such as fiber diameter and inter-fiber spacing alter neurite morphological features, such as total neurite length, the longest single neurite, branching density, and the number of primary neurites. However, the relationships amongst these four neurite morphological features have never been studied on fibrous topographies using multivariate analysis.

View Article and Find Full Text PDF

Magnetic fiber composites combining superparamagnetic iron oxide nanoparticles (SPIONs) and electrospun fibers have shown promise in tissue engineering fields. Controlled grafting of SPIONs to the fibers post-electrospinning generates biocompatible magnetic composites without altering desired fiber morphology. Here, for the first time, we assess the potential of SPION-grafted scaffolds combined with magnetic fields to promote neurite outgrowth by providing contact guidance from the aligned fibers and mechanical stimulation from the SPIONs in the magnetic field.

View Article and Find Full Text PDF

The periosteum is the major source of cells involved in fracture healing. We sought to characterize progenitor cells and their contribution to bone fracture healing. The periosteum is highly enriched with progenitor cells, including Sca1 cells, fibroblast colony-forming units, and label-retaining cells compared to the endosteum and bone marrow.

View Article and Find Full Text PDF

Electrospinning is a fabrication technique used to produce nano- or micro- diameter fibers to generate biocompatible, biodegradable scaffolds for tissue engineering applications. Electrospun fiber scaffolds are advantageous for neural regeneration because they mimic the structure of the nervous system extracellular matrix and provide contact guidance for regenerating axons. Glia are non-neuronal regulatory cells that maintain homeostasis in the healthy nervous system and regulate regeneration in the injured nervous system.

View Article and Find Full Text PDF

Astrocytes are responsible for a wide variety of essential functions throughout the central nervous system. The protein markers glial fibrillary acidic protein (GFAP), glutamate aspartate transporter (GLAST), glutamate transporter-1 (GLT-1), glutamine synthetase (GS), 10-formyltetrahydrofolate dehydrogenase (ALDH1L1), and the transcription factor SOX9 are routinely used to label astrocytes in primary rodent cultures. However, GLAST, GLT-1, GS, and SOX9 are also produced by microglia and oligodendrocytes and GFAP, GLAST, GLT-1, and GS production levels are affected by astrocyte phenotypic changes associated with reactive astrogliosis.

View Article and Find Full Text PDF

Researchers are investigating the use of biomaterials with aligned guidance cues, like those provided by aligned electrospun fibers, to facilitate axonal growth across critical-length peripheral nerve defects. To enhance the regenerative outcomes further, these aligned fibers can be designed to provide local, sustained release of therapeutics. The drug fingolimod improved peripheral nerve regeneration in preclinical rodent models by stimulating a pro-regenerative Schwann cell phenotype and axonal growth.

View Article and Find Full Text PDF

Nervous system damage caused by physical trauma or degenerative diseases can result in loss of sensory and motor function for patients. Biomaterial interventions have shown promise in animal studies, providing contact guidance for extending neurites or sustained release of various drugs and growth factors; however, these approaches often target only one aspect of the regeneration process. More recent studies investigate hybrid approaches, creating complex materials that can reduce inflammation or provide neuroprotection in addition to stimulating growth and regeneration.

View Article and Find Full Text PDF

Cell therapy with adult mesenchymal stem cells (MSCs) is a promising approach to regenerative medicine and autoimmune diseases. There are various approaches to improve the efficacy of MSC-based therapeutics, and MSC preparation as spheroidal aggregates, or MSC spheroids, is a novel preparatory and delivery method. Spheroid formation induces a dramatic change in the gene expression profile of MSCs.

View Article and Find Full Text PDF

Background: The study of intestinal microbiota has been revolutionised by the use of molecular methods, including terminal restriction fragment length polymorphism (T-RFLP) analysis. Microbiota studies of Crohn's disease patients have examined samples from stool or from the neoterminal ileum with a standard biopsy forceps, which could be contaminated by colonic bacteria when the forceps passes through the colonoscope channel.

Objective: To determine whether sheathed biopsy forceps are able to obtain terminal ileal microbiota samples with less colonic bacterial contamination compared with unsheathed (standard) biopsy forceps.

View Article and Find Full Text PDF