Publications by authors named "Jessica Fox"

Members of the order Diptera, the true flies, are among the most maneuverable flying animals. These aerial capabilities are partially attributed to flies' possession of halteres, tiny club-shaped structures that evolved from the hindwings and play a crucial role in flight control. Halteres are renowned for acting as biological gyroscopes that rapidly detect rotational perturbations and help flies maintain a stable flight posture.

View Article and Find Full Text PDF

Halteres are multifunctional mechanosensory organs unique to the true flies (Diptera). A set of reduced hindwings, the halteres beat at the same frequency as the lift-generating forewings and sense inertial forces via mechanosensory campaniform sensilla. Though haltere ablation makes stable flight impossible, the specific role of wing-synchronous input has not been established.

View Article and Find Full Text PDF

Humans have been trying to understand animal behavior at least since recorded history. Recent rapid development of new technologies has allowed us to make significant progress in understanding the physiological and molecular mechanisms underlying behavior, a key goal of neuroethology. However, there is a tradeoff when studying animal behavior and its underlying biological mechanisms: common behavior protocols in the laboratory are designed to be replicable and controlled, but they often fail to encompass the variability and breadth of natural behavior.

View Article and Find Full Text PDF

Objective: The coronavirus disease 2019 (COVID-19) public health emergency has disproportionately affected older adults and their caregivers, requiring evidence-based and coordinated efforts to meet their health and social needs. This paper describes the role of the CDC Foundation as a knowledge broker working with public health partners to rapidly meet the unmet health, social, and other needs of older adults and caregivers during the COVID-19 pandemic. Type of program or service: Qualitative case study using the Role Model for Knowledge Brokering framework to describe a project that translated public health research into practice during the COVID-19 pandemic response.

View Article and Find Full Text PDF

Context.—: Clinical testing for Wilson disease (WD) is potentially challenging. Measuring the fraction of labile bound copper (LBC) to total copper may be a promising alternative diagnostic tool with better sensitivity and specificity than some current biomarker approaches.

View Article and Find Full Text PDF

A new study shows that a brain map in the monarch butterfly can be re-drawn during flight. Migrating butterflies integrate efferent and visual signals to create an adaptable compass in their central brain.

View Article and Find Full Text PDF

In the true flies (Diptera), the hind wings have evolved into specialized mechanosensory organs known as halteres, which are sensitive to gyroscopic and other inertial forces. Together with the fly's visual system, the halteres direct head and wing movements through a suite of equilibrium reflexes that are crucial to the fly's ability to maintain stable flight. As in other animals (including humans), this presents challenges to the nervous system as equilibrium reflexes driven by the inertial sensory system must be integrated with those driven by the visual system in order to control an overlapping pool of motor outputs shared between the two of them.

View Article and Find Full Text PDF

The order Diptera (true flies) are named for their two wings because their hindwings have evolved into specialized mechanosensory organs called halteres. Flies use halteres to detect body rotations and maintain stability during flight and other behaviours. The most recently diverged dipteran monophyletic subsection, the Calyptratae, is highly successful, accounting for approximately 12% of dipteran diversity, and includes common families like house flies.

View Article and Find Full Text PDF

In vivo genetic manipulation is used to study the impact of gene deletion or re-expression on β-cell function and organism physiology. Cre-LoxP is a system wherein LoxP sites flanking a gene are recognized by Cre recombinase. Cre transgenic mice are the most prevalent technology used to deliver Cre but many models have caveats of off-target recombination, impaired β-cell function, and high cost of animal production.

View Article and Find Full Text PDF

While there is a general belief that reforesting marginal, often unprofitable, croplands can result in water quality benefits, to date there have been very few studies that have attempted to quantify the magnitude of the reductions in nutrient (N and P) and sediment export. In order to determine the magnitude of a credit for water quality trading, there is a need to develop quantitative approaches to estimate the benefits from forest planting in terms of load reductions. Here we first evaluate the availability of marginal croplands (i.

View Article and Find Full Text PDF

The reduced hindwings of flies, known as halteres, are specialized mechanosensory organs that detect body rotations during flight. Primary afferents of the haltere encode its oscillation frequency linearly over a wide bandwidth and with precise phase-dependent spiking. However, it is not currently known whether information from haltere primary afferent neurons is sent to higher brain centers where sensory information about body position could be used in decision making, or whether precise spike timing is useful beyond the peripheral circuits that drive wing movements.

View Article and Find Full Text PDF

The successful completion of many behaviors relies on sensory feedback. This symposium brought together researchers using novel techniques to study how different stimuli are encoded, how and where multimodal feedback is integrated, and how feedback modulates motor output in diverse modes of locomotion (aerial, aquatic, and terrestrial) in a diverse range of taxa (insects, fish, tetrapods), and in robots. Similar to biological organisms, robots can be equipped with integrated sensors and can rely on sensory feedback to adjust the output signal of a controller.

View Article and Find Full Text PDF

During locomotion, animals rely on multiple sensory modalities to maintain stability. External cues may guide behaviour, but they must be interpreted in the context of the animal's own body movements. Mechanosensory cues that can resolve dynamic internal and environmental conditions, like those from vertebrate vestibular systems or other proprioceptors, are essential for guided movement.

View Article and Find Full Text PDF

To properly orient and navigate, moving animals must obtain information about the position and motion of their bodies. Animals detect inertial signals resulting from body accelerations and rotations using a variety of sensory systems. In this review, we briefly summarize current knowledge on inertial sensing across widely disparate animal taxa with an emphasis on neuronal coding and sensory transduction.

View Article and Find Full Text PDF

Animals detect the force of gravity with multiple sensory organs, from subcutaneous receptors at body joints to specialized sensors like the vertebrate inner ear. The halteres of flies, specialized mechanoreceptive organs derived from hindwings, are known to detect body rotations during flight, and some groups of flies also oscillate their halteres while walking. The dynamics of halteres are such that they could act as gravity detectors for flies standing on substrates, but their utility during non-flight behaviors is not known.

View Article and Find Full Text PDF

Background: Bile acid diarrhoea (BAD) is a common cause of chronic diarrhoea with a population prevalence of primary BAD around 1%. Previous studies have identified associations with low levels of the ileal hormone fibroblast growth factor 19 (FGF19), obesity and hypertriglyceridaemia. The aim of this study was to identify further associations of BAD.

View Article and Find Full Text PDF

We investigated the impact of emotions on learning vocabulary in an unfamiliar language to better understand affective influences in foreign language acquisition. Seventy native English speakers learned new vocabulary in either a negative or a neutral emotional state. Participants also completed two sets of working memory tasks to examine the potential mediating role of working memory.

View Article and Find Full Text PDF

Animals typically combine inertial and visual information to stabilize their gaze against confounding self-generated visual motion, and to maintain a level gaze when the body is perturbed by external forces. In vertebrates, an inner ear vestibular system provides information about body rotations and accelerations, but gaze stabilization is less understood in insects, which lack a vestibular organ. In flies, the halteres, reduced hindwings imbued with hundreds of mechanosensory cells, sense inertial forces and provide input to neck motoneurons that control gaze.

View Article and Find Full Text PDF

One of the primary specializations of true flies (order Diptera) is the modification of the hind wings into club-shaped halteres. Halteres are complex mechanosensory structures that provide sensory feedback essential for stable flight control via an array of campaniform sensilla at the haltere base. The morphology of these sensilla has previously been described in a small number of dipteran species, but little is known about how they vary across fly taxa.

View Article and Find Full Text PDF

The halteres of dipteran insects (true flies) are essential mechanosensory organs for flight. These are modified hindwings with several arrays of sensory cells at their base, and they are one of the characteristic features of flies. Mechanosensory information from the halteres is sent with low latency to wing-steering and head movement motoneurons, allowing direct control of body position and gaze.

View Article and Find Full Text PDF

Pancreatic progenitors derived from human embryonic stem cells (hESCs) are a potential source of transplantable cells for treating diabetes and are currently being tested in clinical trials. Yet, how the milieu of pancreatic progenitor cells, including exposure to different factors after transplant, may influence their maturation remains unclear. Here, we examined the effect of thyroid dysregulation on the development of hESC-derived progenitor cells in vivo.

View Article and Find Full Text PDF

Pluripotent human embryonic stem cells (hESCs) are a potential source of transplantable cells for treating patients with diabetes. To investigate the impact of the host recipient on hESC-derived pancreatic progenitor cell maturation, cells were transplanted into immunodeficient SCID-beige mice or nude rats. Following the transplant, basal human C-peptide levels were consistently higher in mice compared with rats, but only rats showed robust meal- and glucose-responsive human C-peptide secretion by 19-21 weeks.

View Article and Find Full Text PDF

The halteres of flies are mechanosensory organs that provide information about body rotations during flight. We measured haltere movements in a range of fly taxa during free walking and tethered flight. We find a diversity of wing-haltere phase relationships in flight, with higher variability in more ancient families and less in more derived families.

View Article and Find Full Text PDF

In flies, mechanosensory information from modified hindwings known as halteres is combined with visual information for wing-steering behavior. Haltere input is necessary for free flight, making it difficult to study the effects of haltere ablation under natural flight conditions. We thus used tethered Drosophila melanogaster flies to examine the relationship between halteres and the visual system, using wide-field motion or moving figures as visual stimuli.

View Article and Find Full Text PDF