Melanocytes are essential for skin homeostasis and protection, and their defects in humans lead to a wide array of diseases that are potentially extremely severe. To date, the analysis of molecular mechanisms and the function of human melanocytes have been limited because of the difficulties in accessing large numbers of cells with the specific phenotypes. This issue can now be addressed via a differentiation protocol that allows melanocytes to be obtained from pluripotent stem cell lines, either induced or of embryonic origin, based on the use of moderate concentrations of a single cytokine, bone morphogenic protein 4.
View Article and Find Full Text PDFBackground: Cell therapy for large burns is dependent upon autologous epidermis reconstructed in vitro. However, the effectiveness of current procedures is limited by the delay needed to culture the patient's own keratinocytes. To assess whether the keratinocyte progeny of human embryonic stem cells (hESCs) could be used to form a temporary skin substitute for use in patients awaiting autologous grafts, we investigated the cells' capability of constructing a pluristratified epidermis.
View Article and Find Full Text PDF