Emerging infectious diseases threaten biodiversity and human health. Many emerging pathogens have aquatic life stages and all immersed substrates have biofilms on their surface, i.e.
View Article and Find Full Text PDFDue to their various properties as polymeric materials, plastics have been produced, used and ultimately discharged into the environment. Although some studies have shown their negative impacts on the marine environment, the effects of plastics on freshwater organisms are still poorly studied, while they could be widely in contact with this pollution. The current work aimed to better elucidate the impact and the toxicity mechanisms of two kinds of commercial functionalized nanoplastics, i.
View Article and Find Full Text PDFIn intermittent rivers, which represent a prominent part of worldwide rivers, aquatic organisms are exposed to sequential disturbances including flow cessation, potentially associated with water warming, desiccation process and flow resumption. At flow resumption, pollutants stored in soil and washed by rainfalls can reach fresh waters. The interaction between contamination and river intermittency is poorly understood.
View Article and Find Full Text PDFPhototrophic biofilms are exposed to multiple stressors that can affect them both directly and indirectly. By modifying either the composition of the community or the physiology of the microorganisms, press stressors may indirectly impact the ability of the biofilms to cope with disturbances. Extracellular polymeric substances (EPS) produced by the biofilm are known to play an important role in its resilience to various stresses.
View Article and Find Full Text PDFThe environmental fate and behavior of nanoplastics (NPs) and their toxicity against aquatic organisms are under current investigation. In this work, relevant physicochemical characterizations were provided to analyze the ecotoxicological risk of NPs in the aquatic compartment. For this purpose, heteroaggregates of 50 nm polystyrene nanospheres and natural organic matter were prepared and characterized.
View Article and Find Full Text PDFAquatic ecosystems are exposed to multiple stressors such as agricultural run-off (ARO) and climate-change related increase of temperature. We aimed to determine how ARO and the frequency of its input can affect shallow lake ecosystems through direct and indirect effects on primary producers and primary consumers, and whether warming can mitigate or reinforce the impact of ARO. We performed a set of microcosm experiments simulating ARO using a cocktail of three organic pesticides (terbuthylazine, tebuconazole, pirimicarb), copper and nitrate.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2019
In freshwater ecosystem, phototrophic biofilms play a crucial role through adsorption and sequestration of organic and inorganic pollutants. However, extracellular polymeric substance (EPS) secretion by phototrophic biofilms exposed to metals is poorly documented. This work evaluated the physiological responses of phototrophic biofilms by exposing three microorganisms (cyanobacterium Phormidium autumnale, diatom Nitzschia palea and green alga Uronema confervicolum) to 20 and 200 μg L of Cu or 60 and 600 μg L of Zn, both individually and in combination.
View Article and Find Full Text PDFTeleost fishes interact with diverse microbial communities, playing crucial functions for host fitness. While gut microbiome has been extensively studied, skin microbiome has been overlooked. Specifically, there is no assessment of the relative impact of host and environmental factors on microbiome variability as well as neutral processes shaping fish skin microbiome.
View Article and Find Full Text PDFAutotrophic biofilms are complex and fundamental biological compartments of many aquatic ecosystems. In particular, these biofilms represent a major resource for many invertebrate consumers and the first ecological barrier against toxic metals. To date, very few studies have investigated the indirect effects of stressors on upper trophic levels through alterations of the quality of biofilms for their consumers.
View Article and Find Full Text PDF