Background: Microcarrier cultures which are useful for producing large cell numbers can act as scaffolds to create stem cell-laden microcarrier constructs for cartilage tissue engineering. However, the critical attributes required to achieve efficient chondrogenic differentiation for such constructs are unknown. Therefore, this study aims to elucidate these parameters and determine whether cell attachment to microcarriers throughout differentiation improves chondrogenic outcomes across multiple microcarrier types.
View Article and Find Full Text PDFBackground Aims: Cartilage tissue engineering with human mesenchymal stromal cells (hMSC) is promising for allogeneic cell therapy. To achieve large-scale hMSC propagation, scalable microcarrier-based cultures are preferred over conventional static cultures on tissue culture plastic. Yet it remains unclear how microcarrier cultures affect hMSC chondrogenic potential, and how this potential is distinguished from that of tissue culture plastic.
View Article and Find Full Text PDF