Purpose: Clinical decision support tools (CDSTs) are software that generate patient-specific assessments that can be used to better inform healthcare provider decision making. Machine learning (ML)-based CDSTs have recently been developed for anatomic (aTSA) and reverse (rTSA) total shoulder arthroplasty to facilitate more data-driven, evidence-based decision making. Using this shoulder CDST as an example, this external validation study provides an overview of how ML-based algorithms are developed and discusses the limitations of these tools.
View Article and Find Full Text PDF