Purpose To develop and validate a deep learning (DL) method to detect and segment enhancing and nonenhancing cellular tumor on pre- and posttreatment MRI scans in patients with glioblastoma and to predict overall survival (OS) and progression-free survival (PFS). Materials and Methods This retrospective study included 1397 MRI scans in 1297 patients with glioblastoma, including an internal set of 243 MRI scans (January 2010 to June 2022) for model training and cross-validation and four external test cohorts. Cellular tumor maps were segmented by two radiologists on the basis of imaging, clinical history, and pathologic findings.
View Article and Find Full Text PDFBackground: Recently recognized as a distinct entity, a myxoid glioneuronal tumor (MGNT) is a rare, low-grade central nervous system tumor. MGNTs are commonly located at the septum pellucidum or in the third ventricle, increasing the likelihood of tumor or treatment-related damage to adjacent structures critical for memory, such as the fornix. Though there have been a handful of case reports of neurosurgical and oncological outcomes of MGNTs, memory outcomes following resection of MGNTs adjacent to the fornix have not been previously reported.
View Article and Find Full Text PDFMeningiomas are the most common non-metastatic brain tumors, and although the majority are relatively slow-growing and histologically benign, a subset of meningiomas are aggressive and remain challenging to treat. Despite a standard of care that includes surgical resection and radiotherapy, and recent advances in meningioma molecular grouping, there are no systemic medical options for patients with meningiomas that are resistant to standard interventions. Misactivation of the cell cycle at the level of CDK4/6 is common in high-grade or molecularly aggressive meningiomas, and CDK4/6 has emerged as a potential target for systemic meningioma treatments.
View Article and Find Full Text PDFMeningiomas are the most common primary intracranial tumors. There are no effective medical therapies for meningioma patients, and new treatments have been encumbered by limited understanding of meningioma biology. Here, we use DNA methylation profiling on 565 meningiomas integrated with genetic, transcriptomic, biochemical, proteomic and single-cell approaches to show meningiomas are composed of three DNA methylation groups with distinct clinical outcomes, biological drivers and therapeutic vulnerabilities.
View Article and Find Full Text PDFPurpose Of Review: This review seeks to inform oncology clinicians and researchers about the development of novel immunotherapies for the treatment of glioblastoma. An enumeration of ongoing and recently completed clinical trials will be discussed with special attention given to current technologies implemented to overcome central nervous system-specific challenges including barriers to the peripheral immune system, impaired antigen presentation, and T cell dysfunction.
Recent Findings: The success of immunotherapy in other solid cancers has served as a catalyst to explore its application in glioblastoma, which has limited response to other treatments.
Background: "Diffuse midline glioma (DMG), H3 K27M-mutant" is a new tumor entity established in the 2016 WHO classification of Tumors of the Central Nervous System that comprises a set of diffuse gliomas arising in midline structures and is molecularly defined by a K27M mutation in genes encoding the histone 3 variants H3.3 or H3.1.
View Article and Find Full Text PDFAngiogenesis is a central feature of glioblastoma (GBM), with contribution from several mechanisms and signaling pathways to produce an irregular, poorly constructed, and poorly connected tumor vasculature. Targeting angiogenesis has been efficacious for disease control in other cancers, and given the (I) highly vascularized environment in GBM and (II) correlation between glioma grade and prognosis, angiogenesis became a prime target of therapy in GBM as well. Here, we discuss the therapies developed to target these pathways including vascular endothelial growth factor (VEGF) signaling, mechanisms of tumor resistance to these drugs in the context of disease progression, and the evolving role of anti-angiogenic therapy in GBM.
View Article and Find Full Text PDFPurpose: Under-enrollment in clinical trials significantly limits valid analyses of clinical interventions and generalizability of findings. Often it results in premature study termination, with estimates of 22% to 50% of clinical trials terminated due to poor accrual. Currently, there are limited reports addressing the influence of race/ethnicity and socioeconomic status on clinical trial enrollment in adult glioma patients.
View Article and Find Full Text PDFMetastasizing tumor cells undergo a transformation that resembles a process in normal development when non-migratory epithelial cells modulate the expression of cytoskeletal and adhesion proteins to promote cell motility. Here we find a mesenchymal cadherin, Cadherin-11 (CDH11), is increased in cells exiting the ventricular zone (VZ) neuroepithelium during normal cerebral cortical development. When overexpressed in cortical progenitors in vivo, CDH11 causes premature exit from the neuroepithelium and increased cell migration.
View Article and Find Full Text PDFIntermediate progenitor cells constitute a second proliferative cell type in the developing mammalian cerebral cortex. Little is known about the factors that govern the production of intermediate progenitors. Although persistent expression of stabilized beta-catenin was found to delay the maturation of radial glial progenitors into intermediate progenitors, the relationship between beta-catenin signaling and intermediate progenitors remains poorly understood.
View Article and Find Full Text PDF