Publications by authors named "Jessica D Ewald"

Article Synopsis
  • - HumanIslets.com aids diabetes research by providing easy access to islet phenotyping data and analysis tools, available for download.
  • - The platform features various data types, including molecular omics, islet function assays, tissue processing metadata, and phenotypes from 547 different donors.
  • - As it grows, HumanIslets.com aims to enhance the quality, usability, and accessibility of human islet data for researchers.
View Article and Find Full Text PDF

High-throughput image-based profiling platforms are powerful technologies capable of collecting data from billions of cells exposed to thousands of perturbations in a time- and cost-effective manner. Therefore, image-based profiling data has been increasingly used for diverse biological applications, such as predicting drug mechanism of action or gene function. However, batch effects severely limit community-wide efforts to integrate and interpret image-based profiling data collected across different laboratories and equipment.

View Article and Find Full Text PDF

Efforts to use transcriptomics for toxicity testing have classically relied on the assumption that chemicals consistently produce characteristic transcriptomic signatures that are reflective of their mechanism of action. However, the degree to which transcriptomic responses are conserved across different test methodologies has seldom been explored. With increasing regulatory demand for New Approach Methods (NAMs) that use alternatives to animal models and high-content approaches such as transcriptomics, this type of comparative analysis is needed.

View Article and Find Full Text PDF

Population-level variation and mechanisms behind insulin secretion in response to carbohydrate, protein, and fat remain uncharacterized. We defined prototypical insulin secretion responses to three macronutrients in islets from 140 cadaveric donors, including those with type 2 diabetes. The majority of donors' islets exhibited the highest insulin response to glucose, moderate response to amino acid, and minimal response to fatty acid.

View Article and Find Full Text PDF

Comprehensive molecular and cellular phenotyping of human islets can enable deep mechanistic insights for diabetes research. We established the Human Islet Data Analysis and Sharing (HI-DAS) consortium to advance goals in accessibility, usability, and integration of data from human islets isolated from donors with and without diabetes at the Alberta Diabetes Institute (ADI) IsletCore. Here we introduce HumanIslets.

View Article and Find Full Text PDF

The growing number of multi-omics studies demands clear conceptual workflows coupled with easy-to-use software tools to facilitate data analysis and interpretation. This protocol covers three key components involved in multi-omics analysis, including single-omics data analysis, knowledge-driven integration using biological networks and data-driven integration through joint dimensionality reduction. Using the dataset from a recent multi-omics study of human pancreatic islet tissue and plasma samples, the first section introduces how to perform transcriptomics/proteomics data analysis using ExpressAnalyst and lipidomics data analysis using MetaboAnalyst.

View Article and Find Full Text PDF

Transcriptomics dose-response analysis (TDRA) has emerged as a promising approach for integrating toxicogenomics data into a risk assessment context; however, variability and uncertainty associated with experimental design are not well understood. Here, we evaluated = 55 RNA-seq profiles derived from Japanese quail liver tissue following exposure to chlorpyrifos (0, 0.04, 0.

View Article and Find Full Text PDF

Traditional results from toxicogenomics studies are complex lists of significantly impacted genes or gene sets, which are challenging to synthesize down to actionable results with a clear interpretation. Here, we defined two sets of 21 custom gene sets, called the functional and statistical EcoToxModules, in fathead minnow () to (1) re-cast predefined molecular pathways into a toxicological framework and (2) provide a data-driven, unsupervised grouping of genes impacted by exposure to environmental contaminants. The functional EcoToxModules were identified by re-organizing KEGG pathways into biological processes that are more relevant to ecotoxicology based on the input from expert scientists and regulators.

View Article and Find Full Text PDF

High exposures of mammalian species to inorganic mercury (Hg) and methylmercury (MeHg) have been associated with adverse effects on behavior and reproduction. Different mammalian species exhibit varying responses to similar external exposure levels, reflecting potential differences in Hg toxicokinetics. Here, we use Hg stable isotopes, total Hg, MeHg and selenium (Se) concentrations measured in multiple tissues of North Atlantic pilot whales (Globicephala melas) to investigate processes affecting the distribution and accumulation of Hg and MeHg.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a central nervous system toxicant and exposures can adversely affect the health of marine mammals. Mercuric selenide (HgSe) in marine mammal tissues is hypothesized to result from a protective detoxification mechanism, but toxicokinetic processes contributing to its formation are poorly understood. Here, new data is reported on speciated Hg concentrations in multiple organs of n = 56 ringed seals (Phoca hispida) from Labrador, Canada, and compare concentrations to previously published data from Greenland seals.

View Article and Find Full Text PDF

Methylmercury (MeHg) exposure can cause adverse reproductive and neurodevelopmental health effects. Estuarine fish may be exposed to MeHg produced in rivers and their watersheds, benthic sediment, and the marine water column, but the relative importance of each source is poorly understood. We measured stable isotopes of mercury (δHg, ΔHg, and ΔHg), carbon (δC), and nitrogen (δN) in fish with contrasting habitats from a large subarctic coastal ecosystem to better understand MeHg exposure sources.

View Article and Find Full Text PDF