Activity deprivation in neurons induces a slow compensatory scaling up of synaptic strength, reflecting a homeostatic mechanism for stabilizing neuronal activity. Prior studies have focused on the loss of action potential (AP) driven neurotransmission in synaptic homeostasis. Here, we show that the miniature synaptic transmission that persists during AP blockade profoundly shapes the time course and mechanism of homeostatic scaling.
View Article and Find Full Text PDF