In diabetes mellitus (DM), the prevalence of gastrointestinal (GI) complications, including constipation, diarrhoea, gastroparesis, and/or enteropathy, can be up to ~75%. In this study, we compared three zebrafish larvae models of DM and established an analytical protocol for GI motility. Larvae were fed with either a standard diet (SD; control), or one of three diets to induce a DM-like phenotype: excessive feeding of SD food (ED), a high-fat diet (HFD), or exposing SD-fed larvae to 30 mmol/L glucose (SDG).
View Article and Find Full Text PDFBackground And Aims: The contractile effects of tachykinins on the gastrointestinal tract are well-known, but how they modulate slow-waves, particularly in species capable of emesis, remains largely unknown. We aimed to elucidate the effects of tachykinins on myoelectric and contractile activity of isolated gastrointestinal tissues of the Suncus murinus.
Methods: The effects of substance P (SP), neurokinin (NK)A, NKB and selective NK (CP122,721, CP99,994), NK (SR48,968, GR159,897) and NK (SB218,795, SB222,200) receptor antagonists on isolated stomach, duodenum, ileum and colon segments were studied.
Background: The roles of transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and subfamily A, member 1 (TRPA1) in mechanisms of gastrointestinal motility are complex. This study aimed to clarify the effects of several TRPV1 and TRPA1 ligands on the electrical potentials generated by pacemaker cells in the mouse-isolated ileum.
Method: The pacemaker potentials of ileal segments of mice were recorded extracellularly using a 60-channel microelectrode array.