Publications by authors named "Jessica Byerly"

Protein tyrosine kinase 6 (PTK6), a non-receptor tyrosine kinase, is an oncogenic driver in many tumor types. However, agents that therapeutically target PTK6 are lacking. Although several PTK6 kinase inhibitors have been developed, none have been clinically translated, which may be due to kinase-independent functions that compromise their efficacy.

View Article and Find Full Text PDF

The parasite Cryptosporidium is a leading agent of diarrhoeal disease in young children, and a cause and consequence of chronic malnutrition. There are no vaccines and only limited treatment options. The parasite infects enterocytes, in which it engages in asexual and sexual replication, both of which are essential to continued infection and transmission.

View Article and Find Full Text PDF

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells.

View Article and Find Full Text PDF
Article Synopsis
  • Cryptosporidium causes severe diarrhea in people with weakened T cell functions, making it hard to control the infection.
  • Scientists engineered Cryptosporidium to express a protein that triggers T cell responses, leading to the expansion of specific CD8 T cells that produce interferon-gamma (IFN-γ) to help control parasite growth.
  • The study shows that while the infection targets intestinal cells, the collaboration between these cells and type 1 conventional dendritic cells is essential for effective CD8 T cell responses against Cryptosporidium.
View Article and Find Full Text PDF

Unlabelled: Epithelial-mesenchymal transition (EMT) in cancer promotes metastasis and chemotherapy resistance. A subset of triple-negative breast cancer (TNBC) exhibits a mesenchymal gene signature that is associated with poor patient outcomes. We previously identified PTK6 tyrosine kinase as an oncogenic driver of EMT in a subset of TNBC.

View Article and Find Full Text PDF

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. The use of single cell RNA sequencing to profile IEC during infection revealed induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells, and IEC expression of the IFN-γ receptor was required for parasite control.

View Article and Find Full Text PDF

causes debilitating diarrheal disease in patients with primary and acquired defects in T cell function. However, it has been a challenge to understand how this infection generates T cell responses and how they mediate parasite control. Here, was engineered to express a parasite effector protein (MEDLE-2) that contains the MHC-I restricted SIINFEKL epitope which is recognized by TCR transgenic OT-I CD8 T cells.

View Article and Find Full Text PDF

The apicomplexan parasite is a leading global cause of diarrheal disease, and the infection poses a particularly grave threat to young children and those with weakened immune function. Infection occurs by ingestion of meiotic spores called oocysts, and transmission relies on fecal shedding of new oocysts. The entire life cycle thus occurs in a single host and features asexual as well as sexual forms of replication.

View Article and Find Full Text PDF

Background: Protein kinase C theta, (PRKCQ/PKCθ) is a serine/threonine kinase that is highly expressed in a subset of triple-negative breast cancers (TNBC) and promotes their growth, anoikis resistance, epithelial-mesenchymal transition (EMT), and invasion. Here, we show that PRKCQ regulates the sensitivity of TNBC cells to apoptosis triggered by standard-of-care chemotherapy by regulating levels of pro-apoptotic Bim.

Methods: To determine the effects of PRKCQ expression on chemotherapy-induced apoptosis, shRNA and cDNA vectors were used to modulate the PRKCQ expression in MCF-10A breast epithelial cells or triple-negative breast cancer cells (MDA-MB231Luc, HCC1806).

View Article and Find Full Text PDF

Background: The protein kinase C (PKC) family comprises distinct classes of proteins, many of which are implicated in diverse cellular functions. Protein tyrosine kinase C theta isoform (PRKCQ)/PKCθ, a member of the novel PKC family, may have a distinct isoform-specific role in breast cancer. PKCθ is preferentially expressed in triple-negative breast cancer (TNBC) compared to other breast tumor subtypes.

View Article and Find Full Text PDF

Patients with triple-negative breast cancers (TNBC) are at high risk for recurrent or metastatic disease despite standard treatment, underscoring the need for novel therapeutic targets and strategies. Here we report that protein tyrosine kinase 6 (PTK6) is expressed in approximately 70% of TNBCs where it acts to promote survival and metastatic lung colonization. PTK6 downregulation in mesenchymal TNBC cells suppressed migration and three-dimensional culture growth, and enhanced anoikis, resistance to which is considered a prerequisite for metastasis.

View Article and Find Full Text PDF