Humans are highly skilled in social reasoning, e.g., inferring thoughts of others.
View Article and Find Full Text PDFTwo hypotheses have been proposed about the etiology of neurodevelopmental learning disorders, such as dyslexia and dyscalculia: representation impairments and disrupted access to representations. We implemented a multi-method brain imaging approach to directly investigate these representation and access hypotheses in dyscalculia, a highly prevalent but understudied neurodevelopmental disorder in learning to calculate. We combined several magnetic resonance imaging methods and analyses, including univariate and multivariate analyses, functional and structural connectivity.
View Article and Find Full Text PDFBrain disorders are often investigated in isolation, but very different conclusions might be reached when studies directly contrast multiple disorders. Here, we illustrate this in the context of specific learning disorders, such as dyscalculia and dyslexia. While children with dyscalculia show deficits in arithmetic, children with dyslexia present with reading difficulties.
View Article and Find Full Text PDFHumans show a unique capacity to process complex information from multiple sources. Social perception in natural environment provides a good example of such capacity as it typically requires the integration of information from different sensory systems, and also from different levels of sensory processing. Here, instead of studying one isolate system and level of representation, we focused upon a neuroimaging paradigm which allows to capture multiple brain representations simultaneously, i.
View Article and Find Full Text PDFVisual expertise induces changes in neural processing for many different domains of expertise. However, it is unclear how expertise effects for different domains of expertise are related. In the present fMRI study, we combine large-scale univariate and multi-voxel analyses to contrast the expertise-related neural changes associated with two different domains of expertise, bird expertise (ornithology) and mineral expertise (mineralogy).
View Article and Find Full Text PDFVisual object perception is an important function in primates which can be fine-tuned by experience, even in adults. Which factors determine the regions and the neurons that are modified by learning is still unclear. Recently, it was proposed that the exact cortical focus and distribution of learning effects might depend upon the pre-learning mapping of relevant functional properties and how this mapping determines the informativeness of neural units for the stimuli and the task to be learned.
View Article and Find Full Text PDFHumans are highly adept at multisensory processing of object shape in both vision and touch. Previous studies have mostly focused on where visually perceived object-shape information can be decoded, with haptic shape processing receiving less attention. Here, we investigate visuo-haptic shape processing in the human brain using multivoxel correlation analyses.
View Article and Find Full Text PDFIn numerical cognition, there is a well-known but contested hypothesis that proposes an abstract representation of numerical magnitude in human intraparietal sulcus (IPS). On the other hand, researchers of object cognition have suggested another hypothesis for brain activity in IPS during the processing of number, namely that this activity simply correlates with the number of visual objects or units that are perceived. We contrasted these two accounts by analyzing multivoxel activity patterns elicited by dot patterns and Arabic digits of different magnitudes while participants were explicitly processing the represented numerical magnitude.
View Article and Find Full Text PDFDyslexia is a severe and persistent reading and spelling disorder caused by impairment in the ability to manipulate speech sounds. We combined functional magnetic resonance brain imaging with multivoxel pattern analysis and functional and structural connectivity analysis in an effort to disentangle whether dyslexics' phonological deficits are caused by poor quality of the phonetic representations or by difficulties in accessing intact phonetic representations. We found that phonetic representations are hosted bilaterally in primary and secondary auditory cortices and that their neural quality (in terms of robustness and distinctness) is intact in adults with dyslexia.
View Article and Find Full Text PDF