Publications by authors named "Jessica Boreli Dos Reis Lino"

Assembled together with the most common qubits used in nuclear resonance magnetic (NMR) quantum computation experiments, spin-1/2 nuclei, such as Cd, Hg, Te, and Se, could leverage the prospective scalable quantum computer architectures, enabling many and heteronuclear qubits for NMR quantum information processing (QIP) implementations. A computational design strategy for prescreening recently synthesized complexes of cadmium, mercury, tellurium, selenium, and phosphorus (called MRE complexes) as suitable qubit molecules for NMR QIP is reported. Chemical shifts and spin-spin coupling constants (SSCCs) in five MRE complexes were examined using the spin-orbit zeroth order regular approximation (ZORA) at the density functional theory level and the four-component relativistic Dirac-Kohn-Sham approach.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) is a powerful tool for studying quantum information processing (QIP). Recently quantum technologies have been proposed to overcome the challenges in large-scale NMR QIP. Furthermore, computational chemistry can promote its improvement.

View Article and Find Full Text PDF