Publications by authors named "Jessica Boname"

The Kaposi's sarcoma-associated herpes virus (KSHV) K3 viral gene product effectively down-regulates cell surface MHC class I. K3 is an E3 ubiquitin ligase that promotes Lys(63)-linked polyubiquitination of MHC class I, providing the signal for clathrin-mediated endocytosis. Endocytosis is followed by sorting into the intralumenal vesicles (ILVs) of multivesicular bodies (MVBs) and eventual delivery to lysosomes.

View Article and Find Full Text PDF

The regulated turnover of endoplasmic reticulum (ER)-resident membrane proteins requires their extraction from the membrane lipid bilayer and subsequent proteasome-mediated degradation. Cleavage within the transmembrane domain provides an attractive mechanism to facilitate protein dislocation but has never been shown for endogenous substrates. To determine whether intramembrane proteolysis, specifically cleavage by the intramembrane-cleaving aspartyl protease signal peptide peptidase (SPP), is involved in this pathway, we generated an SPP-specific somatic cell knockout.

View Article and Find Full Text PDF

Tapasin is an integral component of the peptide-loading complex (PLC) important for efficient peptide loading onto MHC class I molecules. We investigated the function of the tapasin-related protein, TAPBPR. Like tapasin, TAPBPR is widely expressed, IFN-γ-inducible, and binds to MHC class I coupled with β2-microglobulin in the endoplasmic reticulum.

View Article and Find Full Text PDF

The covalent attachment of ubiquitin to a protein is one of the most common post-translational modifications and regulates diverse eukaryotic cellular processes. Ubiquitination of MHC class I was first described in the context of viral proteins which target MHC class I for degradation in the endoplasmic reticulum and at the cell surface. Study of viral-induced MHC class I degradation has been extremely instructive in elucidating cellular pathways for degradation of membrane and secretory proteins.

View Article and Find Full Text PDF

Cells communicate with each other and the outside world through surface receptors, which need to be tightly regulated to prevent both overstimulation and receptor desensitization. Understanding the processes involved in the homeostatic control of cell surface receptors is essential, but we are not alone in trying to regulate these receptors. Viruses, as the ultimate host pathogens, have co-evolved over millions of years and have both pirated and adapted host genes to enable viral pathogenesis.

View Article and Find Full Text PDF

The assembly of MHC class I molecules is governed by stringent endoplasmic reticulum (ER) quality control mechanisms. MHC class I heavy chains that fail to achieve their native conformation in complex with β2-microglobulin (β2m) and peptide are targeted for ER-associated degradation. This requires ubiquitination of the MHC class I heavy chain and its dislocation from the ER to the cytosol for proteasome-mediated degradation, although the cellular machinery involved in this process is unknown.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) are critically involved in early development and cell differentiation. In humans, dysfunction of the bone morphogenetic protein type II receptor (BMPR-II) is associated with pulmonary arterial hypertension (PAH) and neoplasia. The ability of Kaposi sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi sarcoma and primary effusion lymphoma, to down-regulate cell surface receptor expression is well documented.

View Article and Find Full Text PDF
Article Synopsis
  • HFE, a nonclassical MHC-I molecule, plays a key role in controlling iron levels in cells, but its regulation is not fully understood.
  • K5, an E3 ubiquitin ligase from KSHV, targets HFE for degradation through polyubiquitination, which leads to its sorting from endosomes to lysosomes.
  • In KSHV-infected BC-3 cells, HFE undergoes rapid degradation upon virus reactivation, indicating both K5 and an endogenous E3 ligase are involved in regulating HFE to maintain iron homeostasis.
View Article and Find Full Text PDF

The downregulation of cell surface receptors by endocytosis is a fundamental requirement for the termination of signalling responses and ubiquitination is a critical regulatory step in receptor regulation. The K5 gene product of Kaposi's sarcoma-associated herpesvirus is an E3 ligase that ubiquitinates and downregulates several cell surface immunoreceptors, including major histocompatibility complex (MHC) class I molecules. Here, we show that K5 targets the membrane proximal lysine of MHC I for conjugation with mixed linkage polyubiquitin chains.

View Article and Find Full Text PDF

Natural killer (NK) cells are important early mediators of host immunity to viral infections. The NK activatory receptors NKG2D and NKp80, both C-type lectin-like homodimeric receptors, stimulate NK cell cytotoxicity toward target cells. Like other herpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV) down-regulates MHC class I molecules to avoid detection by cytotoxic T lymphocytes but renders cells susceptible to NK cell cytotoxicity.

View Article and Find Full Text PDF

An effective host immune response to mycobacterial infection must control pathogen dissemination without inducing immunopathology. Constitutive overexpression of mycobacterial heat shock protein (myHsp70) is associated with impaired bacterial persistence, but the immune-mediated mechanisms are unknown. We found that myHsp70, in addition to enhancing antigen delivery to human dendritic cells, signaled through the CCR5 chemokine receptor, promoting dendritic cell aggregation, immune synapse formation between dendritic cells and T cells, and the generation of effector immune responses.

View Article and Find Full Text PDF

Murine gammaherpesvirus-68 (MHV-68) ORF28 is a gammaherpesvirus-specific gene of unknown function. Analysis of epitope-tagged ORF28 protein indicated that it was membrane-associated and incorporated into virions in N-glycosylated, O-glycosylated and unglycosylated forms. The extensive glycosylation of the small ORF28 extracellular domain--most forms of the protein appeared to be mainly carbohydrate by weight--suggested that a major function of ORF28 is to attach a variety of glycans to the virion surface.

View Article and Find Full Text PDF

Open reading frame 11 (ORF11) is a conserved gammaherpesvirus gene that remains undefined. We identified the product of murine gammaherpesvirus 68 (MHV-68) ORF11, p43, as a virion component with a predominantly perinuclear distribution in infected cells. MHV-68 lacking p43 grew normally in vitro but showed reduced lytic replication in vivo and a delay in seeding to the spleen.

View Article and Find Full Text PDF

The murine gamma-herpesvirus-68 MK3 protein has an intricate interaction with the peptide loading complex that involves MK3 stabilization, a rapid degradation of MHC class I heavy chains, and a slower degradation of TAP. Here we have used tapasin chimeras to distinguish functionally the different immune evasion mechanisms of MK3. Tapasin was cloned in two alternatively spliced forms that differed by a single transmembrane valine residue.

View Article and Find Full Text PDF

The murine gamma-herpesvirus-68 MK3 protein inhibits CD8(+) T cell recognition by ubiquitinating the cytoplasmic tails of classical MHC class I heavy chains. Here we show that MK3 also provides the first example of a protein that degrades tapasin and TAP. The degradation was MK3 RING finger dependent and primarily affected TAP.

View Article and Find Full Text PDF

A murine gammaherpesvirus-68 (MHV-68) mutant with deregulated transcription of its ORF50 transactivator was severely impaired in latency establishment. The deregulated virus showed reduced immunogenicity, probably reflecting a lower antigen load. However, it still elicited effective immunity to a subsequent wild-type (WT) virus challenge.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) establishes persistent lifelong infections and replicates slowly. To withstand robust immunity, HCMV utilizes numerous immune evasion strategies. The HCMV gene cassette encoding US2 to US11 encodes four homologous glycoproteins, US2, US3, US6, and US11, that inhibit the major histocompatibility complex class I (MHC-I) antigen presentation pathway, probably inhibiting recognition by CD8(+) T lymphocytes.

View Article and Find Full Text PDF

CD8(+) T cells are generally considered a key defence against herpesviruses. The murine gamma-herpesvirus-68 encodes two proteins that limit their efficacy. M3 neutralizes chemokines, while K3 downregulates MHC class I glycoproteins.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) expresses a large number of membrane proteins with unknown functions. One class of these membrane proteins apparently acts to allow HCMV to escape detection by the immune system. The best characterized of these are the glycoproteins encoded within the US2 to US11 region of the HCMV genome that mediate resistance to CD8(+) and CD4(+) T cells.

View Article and Find Full Text PDF