Publications by authors named "Jessica Beyer"

Microcystins-common hepatotoxins produced by cyanobacteria-have been detected in a wide range of organisms, though research examining the trophic transfer of microcystins and whether microcystins bioaccumulate or biomagnify in food webs has generated contradictory results. Here, we explored the trophic transfer of microcystins from the herbivorous water flea, Daphnia pulex, to the predatory larvae of a damselfly, Enallagma sp. We tested the hypotheses that microcystins transfer from the tissue of herbivorus zooplankton to that of predatory invertebrates and that these toxins biomagnify across trophic levels.

View Article and Find Full Text PDF

Cyanobacteria are the most prevalent bloom-forming harmful algae in freshwater systems around the world. Adequate sampling of affected systems is limited spatially, temporally, and fiscally. Remote sensing using space- or ground-based systems in large water bodies at spatial and temporal scales that are cost-prohibitive to standard water quality monitoring has proven to be useful in detecting and quantifying cyanobacterial harmful algal blooms.

View Article and Find Full Text PDF
Article Synopsis
  • Harmful algal blooms (HABs) pose a threat to water supplies and human health, but there is disagreement among researchers about how to classify different species within this taxon.
  • While traditional methods recognize several morphospecies with diverse ecologies, DNA analyses suggest these may actually represent a single species with various ecotypes.
  • A pangenome analysis of 122 genomes revealed at least 16 distinct genospecies, which can improve taxonomic clarity and help address ongoing challenges in eco-evolutionary research and management of HABs.
View Article and Find Full Text PDF

The overarching goal of this work is to investigate the size-dependent characteristics of the ionization potential of PbS and CdS quantum dots. The ionization potentials of quantum dots provide critical information about the energies of occupied states, which can then be used to quantify the electron-removal characteristics of quantum dots. The energy of the highest-occupied molecular orbital is used to understand electron-transfer processes when invesigating the energy-level alignment between quantum dots and electron-accepting ligands.

View Article and Find Full Text PDF

Growing attention in aquatic ecology is focusing on biogeographic patterns in microorganisms and whether these potential patterns can be explained within the framework of general ecology. The long-standing microbiologist's credo 'Everything is everywhere, but, the environment selects' suggests that dispersal is not limiting for microbes, but that the environment is the primary determining factor in microbial community composition. Advances in molecular techniques have provided new evidence that biogeographic patterns exist in microbes and that dispersal limitation may actually have an important role, yet more recent study using extremely deep sequencing predicts that indeed everything is everywhere.

View Article and Find Full Text PDF

Transport of aquatic invasive species (AIS) by boats traveling up rivers and streams is an important mechanism of secondary spread of AIS into watersheds. Because physical barriers to AIS movement also prevent navigation, alternate methods for preventing spread are necessary while allowing upstream navigation. One promising approach is to lift boats over physical barriers and then use hot water immersion to kill AIS attached to the hull, motor, or fishing gear.

View Article and Find Full Text PDF