Background: Muscular dystrophies (MD) are a large group of genetic diseases characterized by a progressive loss of muscle. The Latent TGFβ Binding Protein 4 (LTBP4) in the DBA/2 background and the Cytidine Monophosphate-sialic Acid Hydroxylase (CMAH) proteins were previously identified as genetic modifiers in severe MD.
Objective: We investigated whether these modifiers could also influence a mild phenotype such as the one observed in a mouse model of Limb-Girdle MD2I (LGMD2I).
Background: Polarized airway epithelial cell cultures modelling Cystic Fibrosis Transmembrane conductance Regulator (CFTR) defect are crucial for CF and biomedical research. RNA interference has proven its value to generate knockdown models for various pathologies. More recently, genome editing using CRISPR-Cas9 artificial endonuclease was a valuable addition to the toolbox of gene inactivation.
View Article and Find Full Text PDFChronic infection and inflammation of the airways is a hallmark of cystic fibrosis (CF), a disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The response of the CF airway epithelium to the opportunistic pathogen Pseudomonas aeruginosa is characterized by altered inflammation and apoptosis. In this study, we examined innate immune recognition and epithelial responses at the level of the gap junction protein connexin43 (Cx43) in polarized human airway epithelial cells upon infection by PAO1.
View Article and Find Full Text PDFCorneal transplantation is the oldest and one of the most successful transplant procedures with a success rate in many studies in excess of 90%. The high success rate is mainly attributable to the relatively immune-privileged status of the eye and the fact that the cornea is largely avascular. However, the success rate in patients with failed grafts is much lower such that regrafting is frequently the top indication for corneal transplantation in many centers.
View Article and Find Full Text PDF