Publications by authors named "Jessica B Von Pein"

Apoptosis is traditionally considered to be an immunologically silent form of cell death. Multiple mechanisms exist to ensure that apoptosis does not stimulate the immune system to cause inflammation or autoimmunity. Against this expectation, we now report that epithelia are programmed to provoke, rather than suppress, inflammation in response to apoptosis.

View Article and Find Full Text PDF

The noncanonical inflammasome is a signalling complex critical for cell defence against cytosolic Gram-negative bacteria. A key step in the human noncanonical inflammasome pathway involves unleashing the proteolytic activity of caspase-4 within this complex. Caspase-4 induces inflammatory responses by cleaving gasdermin-D (GSDMD) to initiate pyroptosis; however, the molecular mechanisms that activate caspase-4 and govern its capacity to cleave substrates remain poorly defined.

View Article and Find Full Text PDF

The immune system must be able to respond to a myriad of different threats, each requiring a distinct type of response. Here, we demonstrate that the cytoplasmic lysine deacetylase HDAC7 in macrophages is a metabolic switch that triages danger signals to enable the most appropriate immune response. Lipopolysaccharide (LPS) and soluble signals indicating distal or far-away danger trigger HDAC7-dependent glycolysis and proinflammatory IL-1β production.

View Article and Find Full Text PDF

Inflammasomes are inflammatory signaling complexes that provide molecular platforms to activate the protease function of inflammatory caspases. Caspases-1, -4, -5, and -11 are inflammatory caspases activated by inflammasomes to drive lytic cell death and inflammatory mediator production, thereby activating host-protective and pathological immune responses. Here, we comprehensively review the mechanisms that govern the activity of inflammatory caspases.

View Article and Find Full Text PDF

Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle.

View Article and Find Full Text PDF

Innate immune cells such as macrophages and neutrophils initiate protective inflammatory responses and engage antimicrobial responses to provide frontline defence against invading pathogens. These cells can both restrict the availability of certain transition metals that are essential for microbial growth and direct toxic concentrations of metals towards pathogens as antimicrobial responses. Zinc is important for the structure and function of many proteins, however excess zinc can be cytotoxic.

View Article and Find Full Text PDF

TLR-inducible zinc toxicity is an antimicrobial mechanism utilized by macrophages, however knowledge of molecular mechanisms mediating this response is limited. Here, we show that E. coli exposed to zinc stress within primary human macrophages reside in membrane-bound vesicular compartments.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) drive innate immune cell-mediated inflammation. Here we identify class IIa HDACs as key molecular links between Toll-like receptor (TLR)-inducible aerobic glycolysis and macrophage inflammatory responses. A proteomic screen identified the glycolytic enzyme pyruvate kinase M isoform 2 (Pkm2) as a partner of proinflammatory Hdac7 in murine macrophages.

View Article and Find Full Text PDF

Neutrophil extrusion of neutrophil extracellular traps (NETs) and concomitant cell death (NETosis) provides host defense against extracellular pathogens, whereas macrophage death by pyroptosis enables defense against intracellular pathogens. We report the unexpected discovery that gasdermin D (GSDMD) connects these cell death modalities. We show that neutrophil exposure to cytosolic lipopolysaccharide or cytosolic Gram-negative bacteria ( Δ and ) activates noncanonical (caspase-4/11) inflammasome signaling and triggers GSDMD-dependent neutrophil death.

View Article and Find Full Text PDF

IL-1β requires processing by caspase-1 to generate the active, pro-inflammatory cytokine. Acute IL-1β secretion from inflammasome-activated macrophages requires caspase-1-dependent GSDMD cleavage, which also induces pyroptosis. Mechanisms of IL-1β secretion by pyroptotic and non-pyroptotic cells, and the precise functions of caspase-1 and GSDMD therein, are unresolved.

View Article and Find Full Text PDF

The mammalian inhibitor of apoptosis proteins (IAPs) are key regulators of cell death and inflammation. A major function of IAPs is to block the formation of a cell death-inducing complex, termed the ripoptosome, which can trigger caspase-8-dependent apoptosis or caspase-independent necroptosis. Recent studies report that upon TLR4 or TNF receptor 1 (TNFR1) signaling in macrophages, the ripoptosome can also induce NLRP3 inflammasome formation and IL-1β maturation.

View Article and Find Full Text PDF